Constructive Output of Existentially Proved Structure in Combinatorics

Xiaotie Deng
Shanghai Jiaotong University
May 5, 2017

Based on several works with Xi Chen,
Edmonds, Feng, Kulkarni, Liu, Papadimitriou, Qi, Xu

Outline

Outline

Another End of Undirected Lines (AEUL)

Given an undirected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E} ; \mathrm{s})$ of degree no more than 2 with a degree-one node s There exists another node t of degree-one.

Examples:

1. The Sperner Lemma
2. The Smith Theorem

Sperner Lemma

Given a triangle ABC \& its triangulation T.
Base triangle: the minimal size triangles in T.
Sperner Coloring of the set S of vertices of T :
1 A, B, and C are colored Blue, red, and green respectively
2 Each vertex on an edge of $A B C$ is to be colored only with one of the two colors of the ends of its edge.
-E.g., each vertex on AC must hav a color either blue or green.

Sperner triangle: A triangle from T, with all three different colors.
-Lemma: there must be an odd number of Sperner triangles.

SPERNER: Boundary vertices are so colored that each edge has one color internally

The underlying graph

Nodes: base triangles of T
Edges: between two nodes if they share a boundary edge colored by blue and red

Starting node:

The outside of SPERNER
Any other degree one node:
 a base triangle of all three colors

SPERNER

SPERNER: Boundary vertices are so colored that along each of the three lines of the triangle ABC there is only one color internally
Corollary: staring node (outside triangle $A B C)$ is of degree one.

Smith Problem

Given a cubic graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ \& given a Hamiltonian cycle H. There is another different Hamiltonian cycle H'.

Smith Problem

cycle $=>$ path $=>$ lollipop $=>\ldots=>$ lollipop=>cycle

Smith Problem

cycle $=>$ path

Smith Problem

path $=>$ lollipop

Smith Problem

lollipop=>path

Smith Problem

path $=>$ lollipop

Smith Problem

lollipop=>path

Smith Problem

path $=>$ lollipop

Smith Problem

lollipop=>path

Smith Problem

path=>lollipop

Smith Problem

lollipop=>path

Smith Problem

path $=>$ lollipop

Smith Problem

lollipop=>path

Smith Problem

path $=>$ lollipop

Smith Problem

lollipop=>path

Smith Problem

path $=>$ another cycle

The underlying graph

Nodes: a lollipop or a cycle.
Edges: between two lollipops/cycles linked by a path
Starting node:
The given H-cycle
Any other degree one node: any other cycle

Outline

Another End of Directed Lines (AEDL)

How to Create Directions?

Requirements:

1. Local Computation Decision
2. Consistency on each path/cycle

Examples:

1. Possible: The Sperner Lemma
2. Not till now: Smith Problem

AEDL: Directions in SPERNER Triangulation!

Direction of edges on

AEDL: The entering edge has blue on left and red on the right. Keep the direction that way.
Consistency: Prove by induction.
Local decision: obviously.
a

Smith Problem

Node- - - - edge- - - - - Node

AEDL: Directions in Smith's problem?

Edge is between two (Iollipop/cycle)s add edge on a path

Exactly one possibilities with no direction No direction can be created at this point?

Assign Direction to SPERNER

Direction on SPERNER:

Node set: consisting of each base triangle, and outside triangle region, Edge set: Two nodes sharing an boundary edge of colors blue and red.

Direction of an edge: chosen

Outline

Reductions for PPA(D)-Completeness

The problem is $\operatorname{PPA}(D)$-hard, if it can solve $A E(D / U) L$ The Problem is in PPA(D), it is solved by $A E(D / U) L$

It is PPA(D)-Complete iff it is both above

Reductions for PPA(D)-hardness

The problem is PPA(D)-hard, if it can solve $A E(U / D) L$ The Problem is in PPA(D), it is solved by $A E(U / D) L$ It is PPA(D)-Complete iff it is both above

Examples:

1. Reduction of AEDL to 2D SPERNER
2. Reduction of AEUL to m-SPERNER

Reduction of AEDL to 2D SPERNER

Reduction of AEDL to Planar-AEDL

WHY AEDL is not planar?

Reduction of Planar-AEDL to 2D SPERNER

Input Model of of AEDL

Node set: $\mathrm{V}=\{0,1,2, \ldots, \mathrm{~N}-1\}$ where $\mathrm{N}=2^{n}$
Edge set: $\mathrm{E}=\{\mathrm{e}(\mathrm{i}, \mathrm{j})$: for each $i \in V \quad\}$ such that

$$
0 \leq \delta_{-}(i), \delta_{+}(i) \leq 1
$$

such that j in e(i, j) is computed in polynomial time.

Planar AEDL reduces to SPERNER

Coloring Scheme:along the direction. green alone each edge of AEDL
red on left vertices
blue on right vertices
Given starting node: placed at boundary counter-clockwise direction on boundary red All other grid points: colored blue

Properties

All Sperner triangle appears at the end of lines of AEDL.
Boundary has one pair of blue-red edge
Sperner solves Planar-AEDL
Remaining problem: does not know how to embed lines/cycles in AEDL on the plane in polynomial time (\#nodes exponential)

Planar embedding of AEDL

First embed in a fixed way
Then crossing resolution

Planar embedding of AEDL

First embed in a fixed way
Then crossing resolution

Planar embedding of AEDL

First embed in a fixed way
Then crossing resolution
End of lines preserved.
SPERNER: PPADC (Xi
Chen and D, 2005)

Planar embedding of AEUL?

Problem: There is no direction on AEUL

Key Idea:
Create directions, and use AEDL approach
Make reversing lines equivalent with the help
of a reversing line on the mobius strip

Created directions in m-SPERNER for AEUL?

Construction:

1. Create each node as a directed channel, one in another out.
2. For each i with edges (i, j) and (i, k) and $\mathrm{j}<\mathrm{k}$, connect in-port to j and outport to k .
3. difficulty: in-port of i is connected to in-port of j, or out-port of i to the out-port of k.
4. resolution: use the reversing line of mobius strip
5. Given degree one node placed on the boundary.

Node Channel

Convention: Direction up

Difficult edge connector

Convention: Direction up
out-port

Easy edge connector

Convention: Direction up
out-port

Another difficult edge connector

Convention: Direction up

Difficult edge connector

With the help of reversing line on Mobius Strip

Mobius strip embedding of AEUL

Construction based on implicit directions (defined by the numeric values of nodes)

Then crossing resolution
End of lines preserved (corresponding to sperner base triangle
m-SPERNER: PPAC (D, Edmonds, Feng, Liu, Qi, Xu, 2015)

Outline

Two Player Nash Equilibrium Solves Fixed Point

Use probability for strategies in 2NASH as numbers/logic_values Operations on numbers done by probabilities of strategies Implement SPERNER using Nash

1. Individual operations by 2 players
2. Uniformly distribute probabilities of pairs of strategies
3. Embed (1) many gates to (2) matching penny's game

2NASH is PPADC (Xi Chen and D 2006)

Single Gates with 2 Players

- Arithmetic Gates: G_{+}, G_{-}, $G_{c}, G_{x c}, G_{=}$
- Gate $G_{+}: v_{1}+v_{2}=v_{3}$
- Player 1 has 3 strategies 1,2,3;2 two a, b
- Value of player 2 depends on probability of player 1's and his own strategies:

$$
p(a)^{*}(p(1)+p(2))+p(b)^{*} p(3)
$$

- $p(1)+p(2)=p(3)$ if $p(a)^{*} p(b)>0$

a

Combined Circuit to Compute Fixed Point

- A set of K Nodes -v in $[0,1]$
- Gates
- Arithmetic, Logic
- Gate G_{+}:

$$
-v_{3}=\left(v_{1}+v_{2}\right)
$$

- Rule
- Solution

$$
(x+0.2) / 2=x \quad x=?
$$

Overview: from GC to 2-Nash

Generalized Matching Pennies

- $2 \mathrm{~K} \times 2 \mathrm{~K}, \mathrm{M}=2^{\wedge} \mathrm{K}$
$\left(\begin{array}{cccccccc}M & M & 0 & 0 & 0 & 0 & 0 & 0 \\ M & M & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & M & M & 0 & 0 & 0 & 0 \\ 0 & 0 & M & M & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & M & M & 0 & 0 \\ 0 & 0 & 0 & 0 & M & M & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & M & M \\ 0 & 0 & 0 & 0 & 0 & 0 & M & M\end{array}\right)\left(\begin{array}{cccccccc}-M-M & 0 & 0 & 0 & 0 & 0 & 0 \\ -M-M & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -M-M & 0 & 0 & 0 & 0 \\ 0 & 0 & -M-M & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -M-M & 0 & 0 \\ 0 & 0 & 0 & 0 & -M-M & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -M-M \\ 0 & 0 & 0 & 0 & 0 & 0 & -M-M\end{array}\right)$
- Nash equilibrium: $\mathrm{x}_{2 \mathrm{i}-1}+\mathrm{x}_{2 \mathrm{i}}=\mathrm{y}_{2 \mathrm{j}-1}+\mathrm{y}_{2 \mathrm{j}}=1 / \mathrm{K}$

Combine many gates to Bimatrix

Row 5 and 6 of A_{i} Column 5 and 6 of B_{i}

$$
\underset{\left(\mathrm{A}^{*}, \mathrm{~B}^{*}\right)+\left(\mathrm{A}_{2}, \mathrm{~B}_{2}\right)}{\uparrow}
$$

Outline

Octahedral Tucker

Octahedral Tucker of n dimension: Side length 2 hyper-grid with vertices colored with

$$
\{ \pm 1, \pm 2, \cdots, \pm n\}
$$

Boundary vertices with antisymmetric colors

$$
f(p)=-f(-p)
$$

There is an pair of edge complementarily colored: $\mathrm{e}=(\mathrm{i}, \mathrm{j})$ and $f(i)+f(j)=0$

Finding one is PPAC (D, Feng, Kulkarni 2017).

Examples in 2D/3D

2×2 Facets:

- $\mathrm{A}_{1} \mathrm{~A}_{3} \mathrm{~A}_{9} \mathrm{~A}_{7}$ - $\mathrm{M}_{1} \mathrm{M}_{3} \mathrm{Mg}_{9} \mathrm{M}_{7}$
$-\mathrm{B}_{1} \mathrm{~B}_{3} \mathrm{Bg}_{9} \mathrm{~B}_{7}$
- $\mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{~B}_{7} \mathrm{~A}_{7}$ - $\mathrm{A}_{2} \mathrm{~B}_{2}{ }_{2} \mathrm{~B}_{8} \mathrm{~A}_{8}$
- $\mathrm{A}_{3} \mathrm{~B}_{3} \mathrm{~B}_{9} \mathrm{~A}_{9}$ - $\mathrm{A}_{1} \mathrm{~A}_{3} \mathrm{~B}_{3} \mathrm{~B}_{1}$
- $\mathrm{A} 4 \mathrm{~A}_{6} \mathrm{~B}_{6} \mathrm{~B}_{4}$
- $\mathrm{A}_{7} \mathrm{~A}_{9} \mathrm{~B}_{9} \mathrm{~B}_{7}$
- $\mathrm{A}_{1} \mathrm{~A}_{7} \mathrm{Bg}_{9} \mathrm{~B}_{3}$
- $\mathrm{A}_{3} \mathrm{Ag}_{7} \mathrm{BB}_{1}$
- $\mathrm{A}_{7} \mathrm{Ag}_{9} \mathrm{~B}_{3} \mathrm{~B}_{1}$
- $\mathrm{A}_{1} \mathrm{~A}_{3} \mathrm{~B}_{9} \mathrm{~B}_{7}$
- $\mathrm{A}_{1} \mathrm{Ag}_{9} \mathrm{Bg}_{\mathrm{g}}^{1}$
- $\mathrm{A}_{3} \mathrm{~B}_{3} \mathrm{~B}_{7} \mathrm{AA}_{7}$

PPA-Completeness of Octahedral Tucker

From a special sized version of 2D Tucker(proven PPAC)
Reduce one dimension size by half, add a new dimension of size 8 .
End at all size 8 dimensions(a polynmial \# of them). Reduce them into size 2

Key requirement:
Size the problem properly
Beat the last step difficulty on a narrow space.

Size the problem properly

From a special sized version of 2D Tucker. Make sure it is suitable for all the reductions to follow work well
A. Proper size: Derive the starting size of the 2D Tucker problems
B. New triangulations: Make sure octahedral Tucker structure to survive all the subsequent reductions.
C. Create a starting PPAC problem satisfies both conditions

PPA-Completeness of Octahedral Tucker

Make sure reduction is efficient
Not to raise the number of dimensions to become exponential eventually.
A. Reduce one dimension size by half, add a new dimension of size 8.

PPA-Completeness of Octahedral Tucker

Reduce all size 8 dimensions(a polynmial \# of them) to size 2 at each dimension Beat the last step difficulty on a narrow space. An example from size 6 dimension to three each of size 2's

Index:

- original length 6 side
--- diametrically opposite vertices colored with opposite colors
- vertices given new color λ new1
- vertices colored - λ new1
- centre given second new color Anew2

Outline

Summary of the Progress

- Computational Equivalence of 2NASH and Fixed Point (class PPAD)
- Mobiles Band Characterization of (class PPA)
- Two Kinds of Fixed Points in Terms of

Computation

- Challenges: PPAC completeness for Related problem in
Graphs\Numbers\Combinatorics

Unbalancedness of Problems in PPA and PPAC

- There has been a tradition of research in PPA problems
- But almost none (actually two) PPAC problems till recently
- There are a lot of known PPAD-complete problem as well as many in PPAD

PPA-Complete Problems

Grigni (2001) 3D non-orientalbe space PPAC

 2. Fried et al (Grigni 2006) locally 2D space is PPAC 3. D, Edmonds, Feng et al. (2015), 2D m-SPERNER PPAC 4. Assinberger, et al., (2015) 2D TUCKER PPAC 5. Belovs, et al., (2017): PPA-Circuit CNSS and PPA-Circuit Chevalley are PPAC6. D, Feng, Kulkarni (2017): Octahedral Tucker is PPAComplete

- Kintali (2009) already compiled a list of 25 PPAD-complete problems; the list is far from complete.

Problems in PPA

A. Papadimitriouc(1991), Beame, Cook, Edmonds, et al.(1998)

- Smith and Hamiltonian decomposition, Necklace splitting and Discrete Ham sandwich, Explicit Chevalley
B. Cameron and Edmonds $(1990,1999)$
- Many graph problems: room partitioning, perfect matching,
C. Je`ŕabek (2016)
- square root computation and finding quadratic nonresidues modulo n, into PPA
- Factoring in PPA under randomized reduction.
D. D, Feng, Papadimitriou (2016): 2D m-TUCKER is in PPA

Thank you!

