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TYPICAL GRAPH MODIFICATION PROBLEM
Usually, in a graph modification problem we aim to

modify a given graph G via a small number of operations

into some other graph H that has some desired property,

often describing a graph class to which H must belong.

Examples:

What is the fewest number of edges to be deleted from a graph G to
make it become a permutation graph? [Burzyn et al., 2006]

What is the fewest number of edges to be added to a graph G to
make it become chordal bipartite? [Sritharan, 2016]

Is it possible to make a graph bipartite with at most k edge
contractions? [Heggernes et al., 2013]
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TYPICAL GRAPH MODIFICATION PROBLEM

A variety of classical graph-theoretic problems can be captured that way.

If only k vertex deletions are allowed and H must be an independent
set

⇒ INDEPENDENT SET

If only k vertex deletions are allowed and H must be a clique

⇒ CLIQUE

· · ·
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BLOCKER PROBLEMS

Instead of specifying a graph class to which H must belong, we may specify
a graph parameter π and then,

given a graph G , a set S of one or more graph operations, an integer
k , we aim to

I transform G into a graph G ′ using at most k operations from S ,

I such that π(G ′) ≤ π(G )− d for some threshold d ≥ 0.

Such problems are called blocker problems.

The edges/vertices involved can be viewed as "blocking" the
parameter π.

Identifying such sets may have some nice applications.
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BLOCKER PROBLEMS - APPLICATIONS1

Consider for instance the blocker problem with
I π = ω and S = {vertex deletion}.

So, we are interested in finding a subset of k vertices to be deleted, in
order to make the clique number decrease by at least d units.

In a (social or biological or communication or ...) network, a clique
represents a cohesive cluster.

I Attacker’s objective: delete a small set of vertices to restrict the size of
a largest cohesive cluster in the remaining graph.

I Defender’s objective: identify a set of vertices whose deletion would
substantially decrease the size of largest cohesive cluster, in order to
protect these vertices.

1from [Boginski et al., 2014]
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BLOCKER PROBLEMS
There exist several relations to other graph problems:

HADWIGER NUMBER: given a graph G and an integer r , does G contain
Kr as a minor? [Golovach et al., 2014]

I π = α, S = {edge contraction}, k = n − r , d = α(G )− 1.

s-CLUB CONTRACTION: given a graph G , an integer k and a fixed
integer s, can G be k-contracted into a graph with diameter at most
s? [Golovach et al., 2014]

I for s = 1: π = α, S = {edge contraction}, d = α(G )− 1.

VERTEX COVER: given a graph G and an integer k , does G contain a
subset V ′ of at most k vertices such that each edge has at least one
endvertex in V ′?

I for triangle-free graphs: π = ω, S = {vertex deletion}, d = 1.
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π and S

Graph parameters considered so far:

I independence number α;

I chromatic number χ;

I clique number ω;

I vertex cover number β;

I matching number µ.

Set S always consisted of a single operation:

I vertex deletion;

I edge deletion;

I edge addition.
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MATCHING NUMBER µ

π = µ;

S={edge deletion}

Given a graph G and an integer k , is it possible to find k edges to delete
such that the resulting graph G ′ satisfies µ(G ′) ≤ µ(G )− d?

Theorem [Bentz et al., 2010]

Even if d is fixed, the problem is NP-complete in bipartite graphs. But it is
polynomial-time solvable in grid graphs and graphs of bounded treewidth.
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INDEPENDENCE NUMBER α

π = α;

S={vertex deletion}

Given a graph G and an integer k , is it possible to find k vertices to delete
such that the resulting graph G ′ satisfies α(G ′) ≤ α(G )− d?

Theorem [Costa et al., 2010]

The problem is polynomial-time solvable in bipartite graphs.
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CHROMATIC NUMBER χ

π = χ;

S={edge deletion}

Given a graph G and an integer k , is it possible to find k edges to delete
such that the resulting graph G ′ satisfies χ(G ′) ≤ χ(G )− d?

Theorem [Bazgan et al., 2015]

The problem is polynomial-time solvable in threshold graphs. If d is fixed it
is polynomial-time solvable in split graphs.
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EDGE CONTRACTION
We will focus on two operations:

vertex deletion and

edge contraction.

u

v

uv
⇒
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k-CONTRACTED, k-VERTEX-DELETED

k-contracted
Let G ,G ′ be two graphs. We say that G can be k-contracted into the
graph G ′ if G can be modified into G ′ by a sequence of at most k edge
contractions.

k-vertex-deleted
Let G ,G ′ be two graphs. We say that G can be k-vertex-deleted into the
graph G ′ if G can be modified into G ′ by a sequence of at most k vertex
deletions.
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PROBLEMS WITH π ∈ {α, ω, χ}

CONTRACTION BLOCKER(π)
Instance: a graph G and two integers d , k ≥ 0
Question: can G be k-contracted into G ′ with π(G ′) ≤ π(G )− d?

DELETION BLOCKER(π)
Instance: a graph G and two integers d , k ≥ 0
Question: can G be k-vertex-deleted in G ′ with π(G ′) ≤ π(G )− d?

If d is not part of the input, but fixed instead, the corresponding
problems will be denoted by:

I d-CONTRACTION BLOCKER(π)

I d-DELETION BLOCKER(π)
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BIPARTITE GRAPHS

If π ∈ {ω, χ}, CONTRACTION BLOCKER(π) is trivial in bipartite graphs.

For π = α, it turns out that CONTRACTION BLOCKER(α) is NP-hard
for bipartite graphs.

Theorem [Paulusma, Picouleau, R., 2017]

CONTRACTION BLOCKER(α) is NP-hard for bipartite graphs.

We use a reduction from 1-CONTRACTION BLOCKER(α), which is
NP-complete on cobipartite graphs.

Notice that bipartite graphs are not closed under edge contraction;
therefore membership to NP cannot be established.
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TREES
Theorem [Paulusma, Picouleau, R., 2017]

CONTRACTION BLOCKER(α) is linear-time solvable on trees.

Idea of the proof:

Notice the following:
I α(T ) + µ(T ) = n, where n is the number of vertices in T ;

thus, if d > n − µ(T ), the answer is NO.

I Trees are closed under edge contraction!

Contracting an edge: T ⇒ T ′.

An edge contraction does not increase α or µ.

Since α(T ) + µ(T ) = n and α(T ′) + µ(T ′) = n − 1, it follows that:
I either α(T ′) = α(T )− 1,
I or µ(T ′) = µ(T )− 1.
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TREES
Suppose that d ≤ n − 2µ(T ).

I n − 2µ(T ) vertices are unsaturated by a maximum matching M.

I For any edge uv , such that u is unsaturated, v must be saturated since
M is maximum.

I Contracting such an edge ⇒ T ′ such that µ(T ′) = µ(T ).

u

v
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TREES
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I n − 2µ(T ) vertices are unsaturated by a maximum matching M.

I For any edge uv , such that u is unsaturated, v must be saturated since
M is maximum.

I Contracting such an edge ⇒ T ′ such that µ(T ′) = µ(T ).

I Hence, α(T ′) = α(T )− 1.

I ⇒ if d ≤ n − 2µ(T ), contracting d such edges yields a tree T ′ with
α(T ′) = α(T )− d .

I ⇒ if k ≥ d , the answer is YES, otherwise the answer is NO.
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TREES

Suppose that d > n − 2µ(T ).

I First contract the n − 2µ(T ) edges with exactly one endvertex that is
unsaturated by M.

I ⇒ tree T ′ with µ(T ′) = µ(T ) and α(T ′) = α(T )− (n − 2µ(T )).

I M is now a perfect matching in T ′.

I Hence, contracting any edge in T ′ will result in a tree T ′′ with
µ(T ′′) = µ(T ′)− 1 and α(T ′′) = α(T ′).

I But if we contract an edge uv ∈ M, the new vertex becomes
unsaturated by M ′ = M \ {uv}.
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TREES

u

v ⇒
uv

w
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TREES
Suppose that d > n − 2µ(T ).

I First contract the n − 2µ(T ) edges with exactly one endvertex that is
unsaturated by M.

I ⇒ tree T ′ with µ(T ′) = µ(T ) and α(T ′) = α(T )− (n − 2µ(T )).

I M is now a perfect matching in T ′.

I Hence, contracting any edge in T ′ will result in a tree T ′′ with
µ(T ′′) = µ(T ′)− 1 and α(T ′′) = α(T ′).

I But if we contract an edge uv ∈ M, the new vertex becomes
unsaturated by M ′ = M \ {uv}.

I Now we can contract an edge (uv)w and obtain T ′′′ with
µ(T ′′′) = µ(T ′′) and α(T ′′′) = α(T ′′)− 1.

I We can show that this is optimal.

I ⇒ if k ≥ 2(d + µ(T ))− n, the answer is YES, otherwise it’s NO.
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TREES - BIPARTITE GRAPHS

We have

µ(G ) + α(G ) = n

for any bipartite graph G !

But bipartite graphs are not closed under edge contraction!

Being closed under edge contraction plays an important role in our
proof!

Theorem [Costa et al., 2011], [Bazgan et al., 2011]

For π ∈ {α, ω, χ}, DELETION BLOCKER(π) is polynomial-time solvable in
bipartite graphs.
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INTERVAL GRAPHS

Interval graph
A graph G is an interval graph if one can associate with each vertex in G
an interval on the real line such that two vertices are adjacent in G if and
only the corresponding intervals intersect.

a b

c d e

f g

h i j

a

b

c

d

e

f

g

h

i j
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PROPERTIES OF INTERVAL GRAPHS

Interval graphs do not contain any induced cycle of length 4.

An interval graph G on n vertices contains at most n maximal cliques.

All maximal cliques in an interval graph G can be found in polynomial
time.

Two technical Lemmas are needed as well.
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INTERVAL GRAPHS

Theorem [Dinner, Paulusma, Picouleau, R., 2015]

Let π ∈ {ω, χ}. Then CONTRACTION BLOCKER(π) can be solved in
polynomial time on interval graphs.

Idea of the proof:
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INTERVAL GRAPHS

Theorem [Dinner, Paulusma, Picouleau, R., 2015]

Let π ∈ {ω, χ}. Then CONTRACTION BLOCKER(π) can be solved in
polynomial time on interval graphs.

Using similar arguments, we can also show the following:

Theorem [Dinner, Paulusma, Picouleau, R., 2015]

Let π ∈ {ω, χ}. Then DELETION BLOCKER(π) can be solved in polynomial
time on interval graphs.
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CHORDAL GRAPHS

The previous results cannot be generalized to chordal graphs:

Theorem [Paulusma, Picouleau, R., 2016]

Let π ∈ {ω, χ}. Then 1-CONTRACTION BLOCKER(π) and 1-DELETION
BLOCKER(π) are NP-complete for chordal graphs.

For π = α, the complexity of both problems, CONTRACTION
BLOCKER(α) and DELETION BLOCKER(α), is unknown in interval
graphs.

For π = α, the complexity of both problems, 1-CONTRACTION
BLOCKER(α) and 1-DELETION BLOCKER(α), is unknown in chordal
graphs.
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COGRAPHS

Cograph
A graph G is a cograph if it does not contain any path on 4 vertices as an
induced subgraph.

Theorem [Dinner, Paulusma, Picouleau, R., 2015]

For π ∈ {α, ω, χ}, both CONTRACTION BLOCKER(π) and DELETION
BLOCKER(π) can be solved in polynomial time for cographs.
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SPLIT GRAPHS

Split graph
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and a stable set.

Theorem [Costa et al., 2011]

For π ∈ {α, ω, χ}, DELETION BLOCKER(π) is NP-complete and
d-DELETION BLOCKER(π) is polynomial time solvable for split graphs.
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SUBCLASSES OF PERECT GRAPHS

CONTRACTION BLOCKER(π) DELETION BLOCKER(π)
Class π = α π = ω = χ π = α π = ω = χ

Trees P P P∗ P
Bipartite NP-h P P∗ P
Cobipartite d = 1: NP-c NP-c P P∗

d fixed: P
Cograph P P P P
Split NP-c NP-c NP-c∗ NP-c∗

d fixed: P d fixed: P d fixed: P∗ d fixed: P∗

Interval P P
Chordal NP-c d = 1: NP-c NP-c d = 1: NP-c
Perfect d = 1: NP-h d = 1: NP-h NP-c d = 1: NP-c
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P`-FREE GRAPHS

Cographs are equivalent to P4-free graphs, i.e. graphs not containing
an induced path on 4 vertices.

Split graphs do not contain any induced path on 5 vertices, i.e. they
are P5-free.

So we obtain the following dichotomy from the previous results for
P`-free graphs, i.e. not containing any induced path on ` vertices.

Theorem [Dinner, Paulusma, Picouleau, R., 2015]

Let π ∈ {α, ω, χ}. Then CONTRACTION BLOCKER(π) and DELETION
BLOCKER(π) can be solved in polynomial time in P`-free graphs if ` ≤ 4
and NP-hard if ` ≥ 5.
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1 INTRODUCTION

2 PREVIOUS WORK

3 VERTEX DELETION, EDGE CONTRACTION, π ∈ {α, ω, χ}
SUBCLASSES OF PERFECT GRAPHS
H-FREE GRAPHS

4 CONCLUSION
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DEFINITIONS

H-free graph
Let G ,H be two graph. Then G is said to be H-free, if it does not contain
H as an induced subgraph.

If H is an induced subgraph of G , we write H ⊆i G .

Let G1, G2 be two vertex-disjoint graphs. The union G1 ⊕ G2 creates
the disjoint union of G1 and G2.

clique-proof
We say that a graph class G is clique-proof if

G ∈ G =⇒ G ⊕ G ∈ G, G ⊕ Ks ∈ G
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SOME USEFUL RESULTS

Theorem [Paulusma, Picouleau, R., 2016]

If CLIQUE is NP-complete for a clique-proof graph class G, then
CONTRACTION BLOCKER(ω) is co-NP-hard for G, even if d = k = 1.

Theorem [Král et al., 2011]

Let H be a graph. If H ⊆i P4 or H ⊆i P3 ⊕ K1, then the COLORING
problem is polynomial-time solvable for H-free graphs, otherwise it is
NP-hard for H-free graphs.

Theorem [Paulusma, Picouleau, R., 2017]

1-DELETION BLOCKER(α), with k = 1, is NP-hard even for graphs of girth
at least g , for every fixed g ≥ 3.
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H-FREE GRAPHS, π ∈ {ω, α}

Theorem [Dinner, Paulusma, Picouleau, R., 2015-2017]

Let H be a graph. Then the following holds:

• If H ⊆i P4, then DELETION BLOCKER(α) and CONTRACTION
BLOCKER(α) are polynomial-time solvable for H-free graphs; otherwise
both are NP-hard or co-NP-hard for H-free graphs.

• If H ⊆i P4, then DELETION BLOCKER(ω) is polynomial-time solvable
for H-free graphs; otherwise it is NP-hard or co-NP-hard for H-free
graphs.

• Let H 6= K3 ⊕ K1. If H ⊆i P4 or H ⊆i paw, then CONTRACTION
BLOCKER(ω) is polynomial-time solvable for H-free graphs; otherwise
it is NP-hard or co-NP-hard for H-free graphs.
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H-FREE GRAPHS

Theorem [Paulusma, Picouleau, R., 2017]

Let H be a graph. If H ⊆i P4, then CONTRACTION BLOCKER(α) is
polynomial-time solvable for H-free graphs, otherwise it is NP-hard for
H-free graphs.

Idea of the proof:

If H ⊆i P4, use previous result on cographs.

Otherwise, suppose that H contains a cycle Cr .

I If r is odd, use the result on bipartite graphs.

I If r is even, H either contains C4 or 2P2; use previous result on split
graphs.
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H-FREE GRAPHS

Idea of the proof (continued):

So we may assume that H contains no cycle, hence is a forest.

I If H contains 3P1, use previous result on cobipartite graphs.

I So suppose that H is 3P1-free; hence it must contain 2P2 otherwise
H ⊆i P4; use previous result on split graphs.
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H-FREE GRAPHS
Theorem [Paulusma, Picouleau, R., 2017]

Let H be a graph. If H ⊆i P4, then DELETION BLOCKER(α) is
polynomial-time solvable for H-free graphs, otherwise it is NP-hard for
H-free graphs.

Idea of the proof:
If H ⊆i P4, use previous result on cographs.

Otherwise, suppose that H contains a cycle Cr .

I If r = 3, use previous result on graphs of girth at least g = 4.

I If r ≥ 4, use previous result on split graphs.

So we may assume now that H is a forest.

I If 2P2 ⊆i H, use previous result on split graphs.

I If 3P1 ⊆i H, we use the fact the DELETION BLOCKER(ω) is NP-hard
for triangle-free graphs. (⇒ VERTEX COVER)
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H-FREE GRAPHS, π = χ

Theorem [Dinner, Paulusma, Picouleau, R., 2015-2017]

Let H be a graph. Then the following holds:

• If H ⊆i P4, then CONTRACTION BLOCKER(χ) is polynomial-time
solvable for H-free graphs; otherwise it is NP-hard for H-free graphs.

• If H ⊆i P4 or H ⊆i P3 ⊕ K1, then DELETION BLOCKER(χ) is
polynomial-time solvable for H-free graphs; otherwise it is NP-hard or
co-NP-hard for H-free graphs.
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CONCLUSION

We presented blocker problems and their relations with other graph
problems.

In particular we focused on the following two problems and presented
results for subclasses of perfect graphs and for H-free graphs.

CONTRACTION BLOCKER(π)
Instance: a graph G and two integers d , k ≥ 0
Question: can G be k-contracted into G ′ with π(G ′) ≤ π(G )− d?

DELETION BLOCKER(π)
Instance: a graph G and two integers d , k ≥ 0
Question: can G be k-vertex-deleted in G ′ with π(G ′) ≤ π(G )− d?
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OPEN PROBLEMS

What is the complexity of

(1-)CONTRACTION BLOCKER(α) and (1-)DELETION BLOCKER(α) for
interval graphs?

1-CONTRACTION BLOCKER(α) and 1-DELETION BLOCKER(α) for
chordal graphs?

CONTRACTION BLOCKER(ω) for (K3 ⊕ K1)-free graphs?

1-CONTRACTION BLOCKER(π) and 1-DELETION BLOCKER(π) for
H-free graphs with k = 1 and π ∈ {ω, α}?
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Thank you for your attention!
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