On some graph modification problems

BERNARD RIES

Decision Support & Operations Research Department of Informatics Université de Fribourg, Switzerland

ECCO 2017

B. Ries (DS&OR)

Blocker problems

3 ECCO 2017 1 / 52

A B M A B M

Results presented here were obtained in joint work with:

• Oznur Dinner Kadir Has University, Turkey

Daniel Paulusma

Durham University, United Kingdom

• Christophe Picouleau

Conservatoire National des Arts et Métiers, France

2 PREVIOUS WORK

3 VERTEX DELETION, EDGE CONTRACTION, $\pi \in \{\alpha, \omega, \chi\}$ • SUBCLASSES OF PERFECT GRAPHS • *H*-FREE GRAPHS

4 CONCLUSION

<ロト < 同ト < 三ト <

Usually, in a graph modification problem we aim to

• modify a given graph G via a small number of operations

Usually, in a graph modification problem we aim to

- modify a given graph G via a small number of operations
- into some other graph H that has some desired property,

Usually, in a graph modification problem we aim to

- modify a given graph G via a small number of operations
- into some other graph H that has some desired property,
- often describing a graph class to which H must belong.

Usually, in a graph modification problem we aim to

- modify a given graph G via a small number of operations
- into some other graph H that has some desired property,
- often describing a graph class to which H must belong.

Examples:

• What is the fewest number of edges to be deleted from a graph G to make it become a permutation graph? [Burzyn et al., 2006]

Usually, in a graph modification problem we aim to

- modify a given graph G via a small number of operations
- into some other graph H that has some desired property,
- often describing a graph class to which H must belong.

Examples:

- What is the fewest number of edges to be deleted from a graph G to make it become a permutation graph? [Burzyn et al., 2006]
- What is the fewest number of edges to be added to a graph G to make it become chordal bipartite? [Sritharan, 2016]

Usually, in a graph modification problem we aim to

- modify a given graph G via a small number of operations
- into some other graph H that has some desired property,
- often describing a graph class to which H must belong.

Examples:

- What is the fewest number of edges to be deleted from a graph G to make it become a permutation graph? [Burzyn et al., 2006]
- What is the fewest number of edges to be added to a graph G to make it become chordal bipartite? [Sritharan, 2016]
- Is it possible to make a graph bipartite with at most k edge contractions? [Heggernes et al., 2013]

B. Ries (DS&OR)

A variety of classical graph-theoretic problems can be captured that way.

A variety of classical graph-theoretic problems can be captured that way.

• If only k vertex deletions are allowed and H must be an independent set

 \Rightarrow INDEPENDENT SET

A variety of classical graph-theoretic problems can be captured that way.

• If only k vertex deletions are allowed and H must be an independent set

 \Rightarrow INDEPENDENT SET

• If only k vertex deletions are allowed and H must be a clique \Rightarrow CLIQUE

A variety of classical graph-theoretic problems can be captured that way.

• If only k vertex deletions are allowed and H must be an independent set

 \Rightarrow INDEPENDENT SET

• If only k vertex deletions are allowed and H must be a clique \Rightarrow CLIQUE

Instead of specifying a graph class to which H must belong, we may specify a graph parameter π and then,

Instead of specifying a graph class to which H must belong, we may specify a graph parameter π and then,

• given a graph G, a set S of one or more graph operations, an integer k, we aim to

Instead of specifying a graph class to which H must belong, we may specify a graph parameter π and then,

- given a graph G, a set S of one or more graph operations, an integer k, we aim to
 - transform G into a graph G' using at most k operations from S,

Instead of specifying a graph class to which H must belong, we may specify a graph parameter π and then,

- given a graph G, a set S of one or more graph operations, an integer k, we aim to
 - transform G into a graph G' using at most k operations from S,
 - such that $\pi(G') \leq \pi(G) d$ for some threshold $d \geq 0$.

Instead of specifying a graph class to which H must belong, we may specify a graph parameter π and then,

- given a graph G, a set S of one or more graph operations, an integer k, we aim to
 - transform G into a graph G' using at most k operations from S,
 - such that $\pi(G') \leq \pi(G) d$ for some threshold $d \geq 0$.

Such problems are called blocker problems.

Instead of specifying a graph class to which H must belong, we may specify a graph parameter π and then,

- given a graph G, a set S of one or more graph operations, an integer k, we aim to
 - transform G into a graph G' using at most k operations from S,
 - such that $\pi(G') \leq \pi(G) d$ for some threshold $d \geq 0$.

Such problems are called blocker problems.

• The edges/vertices involved can be viewed as "blocking" the parameter π .

Instead of specifying a graph class to which H must belong, we may specify a graph parameter π and then,

- given a graph G, a set S of one or more graph operations, an integer k, we aim to
 - transform G into a graph G' using at most k operations from S,
 - such that $\pi(G') \leq \pi(G) d$ for some threshold $d \geq 0$.

Such problems are called blocker problems.

- The edges/vertices involved can be viewed as "blocking" the parameter π .
- Identifying such sets may have some nice applications.

• Consider for instance the blocker problem with

• $\pi = \omega$ and $S = \{$ vertex deletion $\}$.

¹from [Boginski et al., 2014]

B. Ries (DS&OR)

- Consider for instance the blocker problem with
 - $\pi = \omega$ and $S = \{$ vertex deletion $\}$.
- So, we are interested in finding a subset of k vertices to be deleted, in order to make the clique number decrease by at least d units.

¹from [Boginski et al., 2014]

- Consider for instance the blocker problem with
 - $\pi = \omega$ and $S = \{$ vertex deletion $\}$.
- So, we are interested in finding a subset of k vertices to be deleted, in order to make the clique number decrease by at least d units.
- In a (social or biological or communication or ...) network, a clique represents a cohesive cluster.

- Consider for instance the blocker problem with
 - $\pi = \omega$ and $S = \{$ vertex deletion $\}$.
- So, we are interested in finding a subset of k vertices to be deleted, in order to make the clique number decrease by at least d units.
- In a (social or biological or communication or ...) network, a clique represents a cohesive cluster.
 - Attacker's objective: delete a small set of vertices to restrict the size of a largest cohesive cluster in the remaining graph.

¹from [Boginski et al., 2014]

- Consider for instance the blocker problem with
 - $\pi = \omega$ and $S = \{$ vertex deletion $\}$.
- So, we are interested in finding a subset of k vertices to be deleted, in order to make the clique number decrease by at least d units.
- In a (social or biological or communication or ...) network, a clique represents a cohesive cluster.
 - ► Attacker's objective: delete a small set of vertices to restrict the size of a largest cohesive cluster in the remaining graph.
 - Defender's objective: identify a set of vertices whose deletion would substantially decrease the size of largest cohesive cluster, in order to protect these vertices.

¹from [Boginski et al., 2014]

There exist several relations to other graph problems:

→ ∃ →

There exist several relations to other graph problems:

• HADWIGER NUMBER: given a graph G and an integer r, does G contain K_r as a minor? [Golovach et al., 2014]

There exist several relations to other graph problems:

• HADWIGER NUMBER: given a graph G and an integer r, does G contain K_r as a minor? [Golovach et al., 2014]

• $\pi = \alpha$, $S = \{ \text{edge contraction} \}$, k = n - r, $d = \alpha(G) - 1$.

There exist several relations to other graph problems:

• HADWIGER NUMBER: given a graph G and an integer r, does G contain K_r as a minor? [Golovach et al., 2014]

• $\pi = \alpha$, $S = \{ \text{edge contraction} \}$, k = n - r, $d = \alpha(G) - 1$.

• *s*-CLUB CONTRACTION: given a graph *G*, an integer *k* and a fixed integer *s*, can *G* be *k*-contracted into a graph with diameter at most *s*? [Golovach et al., 2014]

There exist several relations to other graph problems:

• HADWIGER NUMBER: given a graph G and an integer r, does G contain K_r as a minor? [Golovach et al., 2014]

• $\pi = \alpha$, $S = \{ \text{edge contraction} \}, k = n - r, d = \alpha(G) - 1.$

- *s*-CLUB CONTRACTION: given a graph *G*, an integer *k* and a fixed integer *s*, can *G* be *k*-contracted into a graph with diameter at most *s*? [Golovach et al., 2014]
 - for s = 1: $\pi = \alpha$, $S = \{ \text{edge contraction} \}$, $d = \alpha(G) 1$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

There exist several relations to other graph problems:

• HADWIGER NUMBER: given a graph G and an integer r, does G contain K_r as a minor? [Golovach et al., 2014]

• $\pi = \alpha$, $S = \{ \text{edge contraction} \}, k = n - r, d = \alpha(G) - 1.$

• *s*-CLUB CONTRACTION: given a graph *G*, an integer *k* and a fixed integer *s*, can *G* be *k*-contracted into a graph with diameter at most *s*? [Golovach et al., 2014]

• for
$$s = 1$$
: $\pi = \alpha$, $S = \{ \text{edge contraction} \}$, $d = \alpha(G) - 1$.

• VERTEX COVER: given a graph G and an integer k, does G contain a subset V' of at most k vertices such that each edge has at least one endvertex in V'?

There exist several relations to other graph problems:

• HADWIGER NUMBER: given a graph G and an integer r, does G contain K_r as a minor? [Golovach et al., 2014]

• $\pi = \alpha$, $S = \{ \text{edge contraction} \}, k = n - r, d = \alpha(G) - 1.$

• *s*-CLUB CONTRACTION: given a graph *G*, an integer *k* and a fixed integer *s*, can *G* be *k*-contracted into a graph with diameter at most *s*? [Golovach et al., 2014]

• for
$$s = 1$$
: $\pi = \alpha$, $S = \{ edge contraction \}, d = \alpha(G) - 1$.

• VERTEX COVER: given a graph G and an integer k, does G contain a subset V' of at most k vertices such that each edge has at least one endvertex in V'?

• for triangle-free graphs: $\pi = \omega$, $S = \{\text{vertex deletion}\}, d = 1$.

1 INTRODUCTION

2 PREVIOUS WORK

3 VERTEX DELETION, EDGE CONTRACTION, $\pi \in \{\alpha, \omega, \chi\}$ • SUBCLASSES OF PERFECT GRAPHS

• H-FREE GRAPHS

4 CONCLUSION

(日) (同) (三) (1)

π and S

• Graph parameters considered so far:

- independence number α;
- chromatic number χ;
- clique number ω;
- vertex cover number β ;
- matching number μ.

π and S

• Graph parameters considered so far:

- independence number α;
- chromatic number χ ;
- clique number ω;
- vertex cover number β ;
- matching number μ.
- Set S always consisted of a single operation:
 - vertex deletion;
 - edge deletion;
 - edge addition.

MATCHING NUMBER μ

- $\pi = \mu$;
- *S*={edge deletion}

∃ >

<ロト < 同ト < 三ト <
MATCHING NUMBER μ

• $\pi = \mu$;

• *S*={edge deletion}

Given a graph G and an integer k, is it possible to find k edges to delete such that the resulting graph G' satisfies $\mu(G') \leq \mu(G) - d$?

MATCHING NUMBER μ

• $\pi = \mu$;

• S={edge deletion}

Given a graph G and an integer k, is it possible to find k edges to delete such that the resulting graph G' satisfies $\mu(G') \leq \mu(G) - d$?

Theorem [Bentz et al., 2010]

Even if d is fixed, the problem is NP-complete in bipartite graphs. But it is polynomial-time solvable in grid graphs and graphs of bounded treewidth.

INDEPENDENCE NUMBER α

- $\pi = \alpha$;
- *S*={vertex deletion}

∃ >

→ < Ξ → <</p>

INDEPENDENCE NUMBER α

- $\pi = \alpha$;
- *S*={vertex deletion}

Given a graph G and an integer k, is it possible to find k vertices to delete such that the resulting graph G' satisfies $\alpha(G') \leq \alpha(G) - d$?

INDEPENDENCE NUMBER α

- $\pi = \alpha$;
- *S*={vertex deletion}

Given a graph G and an integer k, is it possible to find k vertices to delete such that the resulting graph G' satisfies $\alpha(G') \leq \alpha(G) - d$?

Theorem [Costa et al., 2010]

The problem is polynomial-time solvable in bipartite graphs.

CHROMATIC NUMBER χ

- $\pi = \chi$;
- S={edge deletion}

★聞▶ ★ 国▶ ★ 国▶

CHROMATIC NUMBER χ

- $\pi = \chi$;
- *S*={edge deletion}

Given a graph G and an integer k, is it possible to find k edges to delete such that the resulting graph G' satisfies $\chi(G') \leq \chi(G) - d$?

CHROMATIC NUMBER χ

• $\pi = \chi$;

• *S*={edge deletion}

Given a graph G and an integer k, is it possible to find k edges to delete such that the resulting graph G' satisfies $\chi(G') \leq \chi(G) - d$?

Theorem [Bazgan et al., 2015]

The problem is polynomial-time solvable in threshold graphs. If d is fixed it is polynomial-time solvable in split graphs.

1 INTRODUCTION

2 PREVIOUS WORK

3 VERTEX DELETION, EDGE CONTRACTION, $\pi \in \{\alpha, \omega, \chi\}$ • SUBCLASSES OF PERFECT GRAPHS

• H-FREE GRAPHS

CONCLUSION

(人間) トイヨト イヨト

EDGE CONTRACTION

We will focus on two operations:

• vertex deletion and

EDGE CONTRACTION

We will focus on two operations:

- vertex deletion and
- edge contraction.

EDGE CONTRACTION

We will focus on two operations:

- vertex deletion and
- edge contraction.

k-CONTRACTED, *k*-VERTEX-DELETED

k-contracted

Let G, G' be two graphs. We say that G can be *k*-contracted into the graph G' if G can be modified into G' by a sequence of at most k edge contractions.

k-CONTRACTED, *k*-VERTEX-DELETED

k-contracted

Let G, G' be two graphs. We say that G can be *k*-contracted into the graph G' if G can be modified into G' by a sequence of at most k edge contractions.

k-vertex-deleted

Let G, G' be two graphs. We say that G can be *k*-vertex-deleted into the graph G' if G can be modified into G' by a sequence of at most k vertex deletions.

PROBLEMS WITH $\pi \in \{\alpha, \omega, \chi\}$

CONTRACTION BLOCKER(π) Instance: a graph G and two integers $d, k \ge 0$ Question: can G be k-contracted into G' with $\pi(G') \le \pi(G) - d$?

・ 同 ト ・ ヨ ト ・ ヨ ト …

PROBLEMS WITH $\pi \in \{\alpha, \omega, \chi\}$

CONTRACTION BLOCKER(π)

Instance: a graph G and two integers $d, k \ge 0$ Question: can G be k-contracted into G' with $\pi(G') \le \pi(G) - d$?

DELETION BLOCKER(π)

Instance: a graph G and two integers $d, k \ge 0$ Question: can G be k-vertex-deleted in G' with $\pi(G') \le \pi(G) - d$?

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

PROBLEMS WITH $\pi \in \{\alpha, \omega, \chi\}$

CONTRACTION BLOCKER(π)

Instance: a graph G and two integers $d, k \ge 0$ Question: can G be k-contracted into G' with $\pi(G') \le \pi(G) - d$?

DELETION BLOCKER(π)

Instance: a graph G and two integers $d, k \ge 0$ Question: can G be k-vertex-deleted in G' with $\pi(G') \le \pi(G) - d$?

- If *d* is not part of the input, but fixed instead, the corresponding problems will be denoted by:
 - *d*-CONTRACTION BLOCKER(π)
 - *d*-DELETION BLOCKER(π)

• • = • • = •

1 INTRODUCTION

2 PREVIOUS WORK

3 VERTEX DELETION, EDGE CONTRACTION, $\pi \in \{\alpha, \omega, \chi\}$ • SUBCLASSES OF PERFECT GRAPHS

• H-FREE GRAPHS

CONCLUSION

・ 同 ト ・ ヨ ト ・ ヨ ト

• If $\pi \in \{\omega, \chi\}$, CONTRACTION BLOCKER(π) is trivial in bipartite graphs.

→ < Ξ → <</p>

- If $\pi \in \{\omega, \chi\}$, CONTRACTION BLOCKER(π) is trivial in bipartite graphs.
- For $\pi = \alpha$, it turns out that CONTRACTION BLOCKER(α) is NP-hard for bipartite graphs.

Theorem [Paulusma, Picouleau, R., 2017]

CONTRACTION BLOCKER(α) is NP-hard for bipartite graphs.

- If $\pi \in \{\omega, \chi\}$, CONTRACTION BLOCKER(π) is trivial in bipartite graphs.
- For $\pi = \alpha$, it turns out that CONTRACTION BLOCKER(α) is NP-hard for bipartite graphs.

Theorem [Paulusma, Picouleau, R., 2017] CONTRACTION BLOCKER(α) is NP-hard for bipartite graphs.

• We use a reduction from 1-CONTRACTION BLOCKER(α), which is NP-complete on cobipartite graphs.

- If $\pi \in \{\omega, \chi\}$, CONTRACTION BLOCKER(π) is trivial in bipartite graphs.
- For $\pi = \alpha$, it turns out that CONTRACTION BLOCKER(α) is NP-hard for bipartite graphs.

Theorem [Paulusma, Picouleau, R., 2017] CONTRACTION BLOCKER(α) is NP-hard for bipartite graphs.

- We use a reduction from 1-CONTRACTION BLOCKER(α), which is NP-complete on cobipartite graphs.
- Notice that bipartite graphs are not closed under edge contraction; therefore membership to NP cannot be established.

Theorem [Paulusma, Picouleau, R., 2017]

CONTRACTION BLOCKER(α) is linear-time solvable on trees.

< ロ > < 同 > < 回 > < 回 > < □ > <

Theorem [Paulusma, Picouleau, R., 2017]

CONTRACTION BLOCKER(α) is linear-time solvable on trees.

- Notice the following:
 - α(T) + μ(T) = n, where n is the number of vertices in T;
 thus, if d > n − μ(T), the answer is NO.

Theorem [Paulusma, Picouleau, R., 2017]

CONTRACTION BLOCKER(α) is linear-time solvable on trees.

- Notice the following:
 - α(T) + μ(T) = n, where n is the number of vertices in T; thus, if d > n − μ(T), the answer is NO.
 - Trees are closed under edge contraction!

Theorem [Paulusma, Picouleau, R., 2017]

CONTRACTION BLOCKER(α) is linear-time solvable on trees.

- Notice the following:
 - $\alpha(T) + \mu(T) = n$, where *n* is the number of vertices in *T*; thus, if $d > n \mu(T)$, the answer is NO.
 - Trees are closed under edge contraction!
- Contracting an edge: $T \Rightarrow T'$.

Theorem [Paulusma, Picouleau, R., 2017]

CONTRACTION BLOCKER(α) is linear-time solvable on trees.

- Notice the following:
 - $\alpha(T) + \mu(T) = n$, where *n* is the number of vertices in *T*; thus, if $d > n \mu(T)$, the answer is NO.
 - Trees are closed under edge contraction!
- Contracting an edge: $T \Rightarrow T'$.
- An edge contraction does not increase α or μ .

Theorem [Paulusma, Picouleau, R., 2017]

CONTRACTION BLOCKER(α) is linear-time solvable on trees.

Idea of the proof:

- Notice the following:
 - α(T) + μ(T) = n, where n is the number of vertices in T; thus, if d > n − μ(T), the answer is NO.
 - Trees are closed under edge contraction!
- Contracting an edge: $T \Rightarrow T'$.
- An edge contraction does not increase α or μ .

• Since $\alpha(T) + \mu(T) = n$ and $\alpha(T') + \mu(T') = n - 1$, it follows that:

- either $\alpha(T') = \alpha(T) 1$,
- or $\mu(T') = \mu(T) 1$.

• Suppose that $d \leq n - 2\mu(T)$.

イロト イポト イヨト イヨト

- Suppose that $d \leq n 2\mu(T)$.
 - $n 2\mu(T)$ vertices are unsaturated by a maximum matching M.

イロト 不得下 イヨト イヨト 三日

- Suppose that $d \leq n 2\mu(T)$.
 - $n 2\mu(T)$ vertices are unsaturated by a maximum matching M.
 - For any edge uv, such that u is unsaturated, v must be saturated since M is maximum.

- Suppose that $d \leq n 2\mu(T)$.
 - $n 2\mu(T)$ vertices are unsaturated by a maximum matching M.
 - For any edge uv, such that u is unsaturated, v must be saturated since M is maximum.
 - Contracting such an edge \Rightarrow T' such that $\mu(T') = \mu(T)$.

- Suppose that $d \leq n 2\mu(T)$.
 - $n 2\mu(T)$ vertices are unsaturated by a maximum matching M.
 - For any edge uv, such that u is unsaturated, v must be saturated since M is maximum.
 - Contracting such an edge \Rightarrow T' such that $\mu(T') = \mu(T)$.
 - Hence, $\alpha(T') = \alpha(T) 1$.

イロト イポト イヨト イヨト 二日

- Suppose that $d \leq n 2\mu(T)$.
 - $n 2\mu(T)$ vertices are unsaturated by a maximum matching M.
 - For any edge uv, such that u is unsaturated, v must be saturated since M is maximum.
 - Contracting such an edge \Rightarrow T' such that $\mu(T') = \mu(T)$.
 - Hence, $\alpha(T') = \alpha(T) 1$.
 - ▶ ⇒ if $d \le n 2\mu(T)$, contracting d such edges yields a tree T' with $\alpha(T') = \alpha(T) d$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 うへつ

- Suppose that $d \leq n 2\mu(T)$.
 - $n 2\mu(T)$ vertices are unsaturated by a maximum matching M.
 - For any edge uv, such that u is unsaturated, v must be saturated since M is maximum.
 - Contracting such an edge \Rightarrow T' such that $\mu(T') = \mu(T)$.
 - Hence, $\alpha(T') = \alpha(T) 1$.
 - ▶ ⇒ if $d \le n 2\mu(T)$, contracting d such edges yields a tree T' with $\alpha(T') = \alpha(T) d$.
 - \Rightarrow if $k \ge d$, the answer is YES, otherwise the answer is NO.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 うへつ

• Suppose that $d > n - 2\mu(T)$.

・ロト ・ 一下・ ・ ヨト ・
- Suppose that $d > n 2\mu(T)$.
 - First contract the $n 2\mu(T)$ edges with exactly one endvertex that is unsaturated by M.

► < Ξ > <</p>

- Suppose that $d > n 2\mu(T)$.
 - First contract the $n 2\mu(T)$ edges with exactly one endvertex that is unsaturated by M.
 - ▶ ⇒ tree T' with $\mu(T') = \mu(T)$ and $\alpha(T') = \alpha(T) (n 2\mu(T))$.

< 口 > < 同

• • B • • B • B

- Suppose that $d > n 2\mu(T)$.
 - First contract the $n 2\mu(T)$ edges with exactly one endvertex that is unsaturated by M.
 - ▶ ⇒ tree T' with $\mu(T') = \mu(T)$ and $\alpha(T') = \alpha(T) (n 2\mu(T))$.
 - *M* is now a perfect matching in T'.

• • B • • B • B

- Suppose that $d > n 2\mu(T)$.
 - First contract the $n 2\mu(T)$ edges with exactly one endvertex that is unsaturated by M.
 - ▶ ⇒ tree T' with $\mu(T') = \mu(T)$ and $\alpha(T') = \alpha(T) (n 2\mu(T))$.
 - *M* is now a perfect matching in T'.
 - ► Hence, contracting any edge in T' will result in a tree T'' with $\mu(T'') = \mu(T') 1$ and $\alpha(T'') = \alpha(T')$.

イロト イポト イヨト イヨト 三日

- Suppose that $d > n 2\mu(T)$.
 - First contract the $n 2\mu(T)$ edges with exactly one endvertex that is unsaturated by M.
 - ▶ ⇒ tree T' with $\mu(T') = \mu(T)$ and $\alpha(T') = \alpha(T) (n 2\mu(T))$.
 - *M* is now a perfect matching in T'.
 - ► Hence, contracting any edge in T' will result in a tree T'' with $\mu(T'') = \mu(T') 1$ and $\alpha(T'') = \alpha(T')$.
 - But if we contract an edge uv ∈ M, the new vertex becomes unsaturated by M' = M \ {uv}.

イロト イポト イヨト イヨト 三日

ECCO 2017 24 / 52

< □ > < □ > < □ > < □ > < □ > < □ >

- Suppose that $d > n 2\mu(T)$.
 - First contract the n − 2µ(T) edges with exactly one endvertex that is unsaturated by M.
 - ▶ ⇒ tree T' with $\mu(T') = \mu(T)$ and $\alpha(T') = \alpha(T) (n 2\mu(T))$.
 - *M* is now a perfect matching in T'.
 - ► Hence, contracting any edge in T' will result in a tree T'' with $\mu(T'') = \mu(T') 1$ and $\alpha(T'') = \alpha(T')$.
 - But if we contract an edge uv ∈ M, the new vertex becomes unsaturated by M' = M \ {uv}.
 - ▶ Now we can contract an edge (uv)w and obtain T''' with $\mu(T''') = \mu(T'')$ and $\alpha(T''') = \alpha(T'') 1$.

イロト 不得下 イヨト イヨト 三日

- Suppose that $d > n 2\mu(T)$.
 - First contract the $n 2\mu(T)$ edges with exactly one endvertex that is unsaturated by M.
 - ▶ ⇒ tree T' with $\mu(T') = \mu(T)$ and $\alpha(T') = \alpha(T) (n 2\mu(T))$.
 - *M* is now a perfect matching in T'.
 - ► Hence, contracting any edge in T' will result in a tree T'' with $\mu(T'') = \mu(T') 1$ and $\alpha(T'') = \alpha(T')$.
 - But if we contract an edge uv ∈ M, the new vertex becomes unsaturated by M' = M \ {uv}.
 - ▶ Now we can contract an edge (uv)w and obtain T''' with $\mu(T''') = \mu(T'')$ and $\alpha(T''') = \alpha(T'') 1$.
 - We can show that this is optimal.

イロト 不得下 イヨト イヨト 三日

- Suppose that $d > n 2\mu(T)$.
 - First contract the $n 2\mu(T)$ edges with exactly one endvertex that is unsaturated by M.
 - ▶ ⇒ tree T' with $\mu(T') = \mu(T)$ and $\alpha(T') = \alpha(T) (n 2\mu(T))$.
 - *M* is now a perfect matching in T'.
 - ► Hence, contracting any edge in T' will result in a tree T'' with $\mu(T'') = \mu(T') 1$ and $\alpha(T'') = \alpha(T')$.
 - But if we contract an edge uv ∈ M, the new vertex becomes unsaturated by M' = M \ {uv}.
 - ▶ Now we can contract an edge (uv)w and obtain T''' with $\mu(T''') = \mu(T'')$ and $\alpha(T''') = \alpha(T'') 1$.
 - We can show that this is optimal.

▶ ⇒ if $k \ge 2(d + \mu(T)) - n$, the answer is YES, otherwise it's NO.

• We have

 $\mu(G) + \alpha(G) = n$

for any bipartite graph G!

- ∢ ⊒ ▶

We have

 $\mu(G) + \alpha(G) = n$

for any bipartite graph G!

• But bipartite graphs are not closed under edge contraction!

We have

 $\mu(G) + \alpha(G) = n$

for any bipartite graph G!

- But bipartite graphs are not closed under edge contraction!
- Being closed under edge contraction plays an important role in our proof!

We have

 $\mu(G) + \alpha(G) = n$

for any bipartite graph G!

- But bipartite graphs are not closed under edge contraction!
- Being closed under edge contraction plays an important role in our proof!

Theorem [Costa et al., 2011], [Bazgan et al., 2011] For $\pi \in \{\alpha, \omega, \chi\}$, DELETION BLOCKER(π) is polynomial-time solvable in bipartite graphs.

Interval graph

A graph G is an interval graph if one can associate with each vertex in G an interval on the real line such that two vertices are adjacent in G if and only the corresponding intervals intersect.

Interval graph

A graph G is an interval graph if one can associate with each vertex in G an interval on the real line such that two vertices are adjacent in G if and only the corresponding intervals intersect.

• Interval graphs do not contain any induced cycle of length 4.

- Interval graphs do not contain any induced cycle of length 4.
- An interval graph G on n vertices contains at most n maximal cliques.

- Interval graphs do not contain any induced cycle of length 4.
- An interval graph G on n vertices contains at most n maximal cliques.
- All maximal cliques in an interval graph G can be found in polynomial time.

- Interval graphs do not contain any induced cycle of length 4.
- An interval graph G on n vertices contains at most n maximal cliques.
- All maximal cliques in an interval graph G can be found in polynomial time.
- Two technical Lemmas are needed as well.

Theorem [Dinner, Paulusma, Picouleau, R., 2015]

Let $\pi \in \{\omega, \chi\}$. Then CONTRACTION BLOCKER(π) can be solved in polynomial time on interval graphs.

Theorem [Dinner, Paulusma, Picouleau, R., 2015]

Let $\pi \in \{\omega, \chi\}$. Then CONTRACTION BLOCKER(π) can be solved in polynomial time on interval graphs.

Theorem [Dinner, Paulusma, Picouleau, R., 2015]

Let $\pi \in \{\omega, \chi\}$. Then CONTRACTION BLOCKER(π) can be solved in polynomial time on interval graphs.

Theorem [Dinner, Paulusma, Picouleau, R., 2015]

Let $\pi \in \{\omega, \chi\}$. Then CONTRACTION BLOCKER(π) can be solved in polynomial time on interval graphs.

Theorem [Dinner, Paulusma, Picouleau, R., 2015]

Let $\pi \in \{\omega, \chi\}$. Then CONTRACTION BLOCKER(π) can be solved in polynomial time on interval graphs.

Theorem [Dinner, Paulusma, Picouleau, R., 2015]

Let $\pi \in \{\omega, \chi\}$. Then CONTRACTION BLOCKER(π) can be solved in polynomial time on interval graphs.

Theorem [Dinner, Paulusma, Picouleau, R., 2015]

Let $\pi \in \{\omega, \chi\}$. Then CONTRACTION BLOCKER(π) can be solved in polynomial time on interval graphs.

Theorem [Dinner, Paulusma, Picouleau, R., 2015]

Let $\pi \in \{\omega, \chi\}$. Then CONTRACTION BLOCKER(π) can be solved in polynomial time on interval graphs.

Using similar arguments, we can also show the following:

Theorem [Dinner, Paulusma, Picouleau, R., 2015]

Let $\pi \in \{\omega, \chi\}$. Then DELETION BLOCKER(π) can be solved in polynomial time on interval graphs.

CHORDAL GRAPHS

The previous results cannot be generalized to chordal graphs:

Theorem [Paulusma, Picouleau, R., 2016]

Let $\pi \in \{\omega, \chi\}$. Then 1-CONTRACTION BLOCKER(π) and 1-DELETION BLOCKER(π) are NP-complete for chordal graphs.

CHORDAL GRAPHS

The previous results cannot be generalized to chordal graphs:

- For π = α, the complexity of both problems, CONTRACTION
 BLOCKER(α) and DELETION BLOCKER(α), is unknown in interval graphs.
- For π = α, the complexity of both problems, 1-CONTRACTION
 BLOCKER(α) and 1-DELETION BLOCKER(α), is unknown in chordal graphs.

COGRAPHS

Cograph

A graph G is a cograph if it does not contain any path on 4 vertices as an induced subgraph.

COGRAPHS

Cograph

A graph G is a cograph if it does not contain any path on 4 vertices as an induced subgraph.

Theorem [Dinner, Paulusma, Picouleau, R., 2015]

For $\pi \in \{\alpha, \omega, \chi\}$, both CONTRACTION BLOCKER(π) and DELETION BLOCKER(π) can be solved in polynomial time for cographs.

SPLIT GRAPHS

Split graph

A graph G is a split graph if its vertex set can be partitioned into a clique and a stable set.

→ ∃ →

SPLIT GRAPHS

Split graph

A graph G is a split graph if its vertex set can be partitioned into a clique and a stable set.

Theorem [Costa et al., 2011]

For $\pi \in \{\alpha, \omega, \chi\}$, DELETION BLOCKER (π) is NP-complete and d-DELETION BLOCKER (π) is polynomial time solvable for split graphs.

SPLIT GRAPHS

Split graph

A graph G is a split graph if its vertex set can be partitioned into a clique and a stable set.

Theorem [Costa et al., 2011]

For $\pi \in \{\alpha, \omega, \chi\}$, DELETION BLOCKER (π) is NP-complete and d-DELETION BLOCKER (π) is polynomial time solvable for split graphs.

Theorem [Dinner, Paulusma, Picouleau, R., 2015]

For $\pi \in \{\alpha, \omega, \chi\}$, CONTRACTION BLOCKER (π) is NP-complete and d-CONTRACTION BLOCKER (π) is polynomial time solvable for split graphs.

B. Ries (DS&OR)

Blocker problems

ECCO 2017 38 / 52

SUBCLASSES OF PERECT GRAPHS

	CONTRACTION BLOCKER(π)		DELETION BLOCKER (π)	
Class	$\pi = \alpha$	$\pi=\omega=\chi$	$\pi = \alpha$	$\pi=\omega=\chi$
Trees	Р	Р	P*	Р
Bipartite	NP-h	Р	P*	Р
Cobipartite	<i>d</i> = 1: NP-c	NP-c	Р	P*
		d fixed: P		
Cograph	Р	Р	Р	Р
Split	NP-c	NP-c	NP-c*	NP-c*
	d fixed: P	d fixed: P	d fixed: P^*	d fixed: P^*
Interval		Р		Р
Chordal	NP-c	<i>d</i> = 1: NP-c	NP-c	<i>d</i> = 1: NP-c
Perfect	d = 1: NP-h	<i>d</i> = 1: NP-h	NP-c	<i>d</i> = 1: NP-c

イロト イポト イヨト イヨト

*P*_ℓ-**FREE GRAPHS**

• Cographs are equivalent to P_4 -free graphs, i.e. graphs not containing an induced path on 4 vertices.

· **₹ ⊒ } ₹**
*P*_ℓ-**FREE GRAPHS**

- Cographs are equivalent to P_4 -free graphs, i.e. graphs not containing an induced path on 4 vertices.
- Split graphs do not contain any induced path on 5 vertices, i.e. they are *P*₅-free.

*P*_ℓ-**FREE GRAPHS**

- Cographs are equivalent to P_4 -free graphs, i.e. graphs not containing an induced path on 4 vertices.
- Split graphs do not contain any induced path on 5 vertices, i.e. they are *P*₅-free.
- So we obtain the following dichotomy from the previous results for P_{ℓ} -free graphs, i.e. not containing any induced path on ℓ vertices.

*P*ℓ-**FREE GRAPHS**

- Cographs are equivalent to P_4 -free graphs, i.e. graphs not containing an induced path on 4 vertices.
- Split graphs do not contain any induced path on 5 vertices, i.e. they are *P*₅-free.
- So we obtain the following dichotomy from the previous results for P_{ℓ} -free graphs, i.e. not containing any induced path on ℓ vertices.

Theorem [Dinner, Paulusma, Picouleau, R., 2015]

Let $\pi \in \{\alpha, \omega, \chi\}$. Then CONTRACTION BLOCKER (π) and DELETION BLOCKER (π) can be solved in polynomial time in P_{ℓ} -free graphs if $\ell \leq 4$ and NP-hard if $\ell \geq 5$.

< ロ > < 得 > < き > < き > ・

3 VERTEX DELETION, EDGE CONTRACTION, $\pi \in \{\alpha, \omega, \chi\}$ SUBCLASSES OF PERFECT GRAPHS

• H-FREE GRAPHS

ヨート

► < Ξ > <</p>

H-free graph

Let G, H be two graph. Then G is said to be *H*-free, if it does not contain H as an induced subgraph.

H-free graph

Let G, H be two graph. Then G is said to be H-free, if it does not contain H as an induced subgraph.

• If *H* is an induced subgraph of *G*, we write $H \subseteq_i G$.

H-free graph

Let G, H be two graph. Then G is said to be H-free, if it does not contain H as an induced subgraph.

- If H is an induced subgraph of G, we write $H \subseteq_i G$.
- Let G_1 , G_2 be two vertex-disjoint graphs. The union $G_1 \oplus G_2$ creates the disjoint union of G_1 and G_2 .

H-free graph

Let G, H be two graph. Then G is said to be *H*-free, if it does not contain H as an induced subgraph.

- If H is an induced subgraph of G, we write $H \subseteq_i G$.
- Let G_1 , G_2 be two vertex-disjoint graphs. The union $G_1 \oplus G_2$ creates the disjoint union of G_1 and G_2 .

clique-proof

We say that a graph class ${\mathcal G}$ is clique-proof if

$$G \in \mathcal{G} \implies G \oplus G \in \mathcal{G}, \ G \oplus K_s \in \mathcal{G}$$

(日) (同) (三) (三)

э

SOME USEFUL RESULTS

Theorem [Paulusma, Picouleau, R., 2016]

If CLIQUE is NP-complete for a clique-proof graph class \mathcal{G} , then CONTRACTION BLOCKER(ω) is co-NP-hard for \mathcal{G} , even if d = k = 1.

SOME USEFUL RESULTS

Theorem [Paulusma, Picouleau, R., 2016]

If CLIQUE is NP-complete for a clique-proof graph class \mathcal{G} , then CONTRACTION BLOCKER(ω) is co-NP-hard for \mathcal{G} , even if d = k = 1.

Theorem [Král et al., 2011]

Let *H* be a graph. If $H \subseteq_i P_4$ or $H \subseteq_i P_3 \oplus K_1$, then the COLORING problem is polynomial-time solvable for *H*-free graphs, otherwise it is NP-hard for *H*-free graphs.

SOME USEFUL RESULTS

Theorem [Paulusma, Picouleau, R., 2016]

If CLIQUE is NP-complete for a clique-proof graph class \mathcal{G} , then CONTRACTION BLOCKER(ω) is co-NP-hard for \mathcal{G} , even if d = k = 1.

Theorem [Král et al., 2011]

Let *H* be a graph. If $H \subseteq_i P_4$ or $H \subseteq_i P_3 \oplus K_1$, then the COLORING problem is polynomial-time solvable for *H*-free graphs, otherwise it is NP-hard for *H*-free graphs.

Theorem [Paulusma, Picouleau, R., 2017]

1-DELETION BLOCKER(α), with k = 1, is NP-hard even for graphs of girth at least g, for every fixed $g \ge 3$.

(日) (同) (三) (

H-FREE GRAPHS, $\pi \in \{\omega, \alpha\}$

Theorem [Dinner, Paulusma, Picouleau, R., 2015-2017]

Let H be a graph. Then the following holds:

- If H ⊆_i P₄, then DELETION BLOCKER(α) and CONTRACTION BLOCKER(α) are polynomial-time solvable for H-free graphs; otherwise both are NP-hard or co-NP-hard for H-free graphs.
- If $H \subseteq_i P_4$, then DELETION BLOCKER(ω) is polynomial-time solvable for *H*-free graphs; otherwise it is NP-hard or co-NP-hard for *H*-free graphs.
- Let $H \neq K_3 \oplus K_1$. If $H \subseteq_i P_4$ or $H \subseteq_i$ paw, then CONTRACTION BLOCKER(ω) is polynomial-time solvable for *H*-free graphs; otherwise it is NP-hard or co-NP-hard for *H*-free graphs.

B. Ries (DS&OR)

ECCO 2017 44 / 52

・ロト ・聞 ト ・ ヨト ・ ヨト …

Theorem [Paulusma, Picouleau, R., 2017]

Let *H* be a graph. If $H \subseteq_i P_4$, then CONTRACTION BLOCKER(α) is polynomial-time solvable for *H*-free graphs, otherwise it is NP-hard for *H*-free graphs.

Theorem [Paulusma, Picouleau, R., 2017]

Let *H* be a graph. If $H \subseteq_i P_4$, then CONTRACTION BLOCKER(α) is polynomial-time solvable for *H*-free graphs, otherwise it is NP-hard for *H*-free graphs.

Idea of the proof:

• If $H \subseteq_i P_4$, use previous result on cographs.

Theorem [Paulusma, Picouleau, R., 2017]

Let *H* be a graph. If $H \subseteq_i P_4$, then CONTRACTION BLOCKER(α) is polynomial-time solvable for *H*-free graphs, otherwise it is NP-hard for *H*-free graphs.

- If $H \subseteq_i P_4$, use previous result on cographs.
- Otherwise, suppose that H contains a cycle C_r .

Theorem [Paulusma, Picouleau, R., 2017]

Let *H* be a graph. If $H \subseteq_i P_4$, then CONTRACTION BLOCKER(α) is polynomial-time solvable for *H*-free graphs, otherwise it is NP-hard for *H*-free graphs.

- If $H \subseteq_i P_4$, use previous result on cographs.
- Otherwise, suppose that H contains a cycle C_r .
 - ▶ If *r* is odd, use the result on bipartite graphs.

Theorem [Paulusma, Picouleau, R., 2017]

Let *H* be a graph. If $H \subseteq_i P_4$, then CONTRACTION BLOCKER(α) is polynomial-time solvable for *H*-free graphs, otherwise it is NP-hard for *H*-free graphs.

- If $H \subseteq_i P_4$, use previous result on cographs.
- Otherwise, suppose that H contains a cycle C_r .
 - ▶ If *r* is odd, use the result on bipartite graphs.
 - ▶ If r is even, H either contains C_4 or $2P_2$; use previous result on split graphs.

Idea of the proof (continued):

• So we may assume that *H* contains no cycle, hence is a forest.

Idea of the proof (continued):

- So we may assume that *H* contains no cycle, hence is a forest.
 - If H contains $3P_1$, use previous result on cobipartite graphs.

Idea of the proof (continued):

- So we may assume that *H* contains no cycle, hence is a forest.
 - If H contains $3P_1$, use previous result on cobipartite graphs.
 - So suppose that H is 3P₁-free; hence it must contain 2P₂ otherwise H ⊆_i P₄; use previous result on split graphs.

Theorem [Paulusma, Picouleau, R., 2017]

Let *H* be a graph. If $H \subseteq_i P_4$, then DELETION BLOCKER(α) is polynomial-time solvable for *H*-free graphs, otherwise it is NP-hard for *H*-free graphs.

Theorem [Paulusma, Picouleau, R., 2017]

Let *H* be a graph. If $H \subseteq_i P_4$, then DELETION BLOCKER(α) is polynomial-time solvable for *H*-free graphs, otherwise it is NP-hard for *H*-free graphs.

Idea of the proof:

• If $H \subseteq_i P_4$, use previous result on cographs.

Theorem [Paulusma, Picouleau, R., 2017]

Let *H* be a graph. If $H \subseteq_i P_4$, then DELETION BLOCKER(α) is polynomial-time solvable for *H*-free graphs, otherwise it is NP-hard for *H*-free graphs.

- If $H \subseteq_i P_4$, use previous result on cographs.
- Otherwise, suppose that H contains a cycle C_r .

Theorem [Paulusma, Picouleau, R., 2017]

Let *H* be a graph. If $H \subseteq_i P_4$, then DELETION BLOCKER(α) is polynomial-time solvable for *H*-free graphs, otherwise it is NP-hard for *H*-free graphs.

- If $H \subseteq_i P_4$, use previous result on cographs.
- Otherwise, suppose that H contains a cycle C_r .
 - If r = 3, use previous result on graphs of girth at least g = 4.

Theorem [Paulusma, Picouleau, R., 2017]

Let *H* be a graph. If $H \subseteq_i P_4$, then DELETION BLOCKER(α) is polynomial-time solvable for *H*-free graphs, otherwise it is NP-hard for *H*-free graphs.

- If $H \subseteq_i P_4$, use previous result on cographs.
- Otherwise, suppose that H contains a cycle C_r .
 - If r = 3, use previous result on graphs of girth at least g = 4.
 - If $r \ge 4$, use previous result on split graphs.

Theorem [Paulusma, Picouleau, R., 2017]

Let *H* be a graph. If $H \subseteq_i P_4$, then DELETION BLOCKER(α) is polynomial-time solvable for *H*-free graphs, otherwise it is NP-hard for *H*-free graphs.

- If $H \subseteq_i P_4$, use previous result on cographs.
- Otherwise, suppose that H contains a cycle C_r .
 - If r = 3, use previous result on graphs of girth at least g = 4.
 - If $r \ge 4$, use previous result on split graphs.
- So we may assume now that *H* is a forest.

Theorem [Paulusma, Picouleau, R., 2017]

Let *H* be a graph. If $H \subseteq_i P_4$, then DELETION BLOCKER(α) is polynomial-time solvable for *H*-free graphs, otherwise it is NP-hard for *H*-free graphs.

- If $H \subseteq_i P_4$, use previous result on cographs.
- Otherwise, suppose that H contains a cycle C_r .
 - If r = 3, use previous result on graphs of girth at least g = 4.
 - If $r \ge 4$, use previous result on split graphs.
- So we may assume now that *H* is a forest.
 - If $2P_2 \subseteq_i H$, use previous result on split graphs.

Theorem [Paulusma, Picouleau, R., 2017]

Let *H* be a graph. If $H \subseteq_i P_4$, then DELETION BLOCKER(α) is polynomial-time solvable for *H*-free graphs, otherwise it is NP-hard for *H*-free graphs.

- If $H \subseteq_i P_4$, use previous result on cographs.
- Otherwise, suppose that H contains a cycle C_r .
 - If r = 3, use previous result on graphs of girth at least g = 4.
 - If $r \ge 4$, use previous result on split graphs.
- So we may assume now that *H* is a forest.
 - If $2P_2 \subseteq_i H$, use previous result on split graphs.
 - ► If $3P_1 \subseteq_i H$, we use the fact the DELETION BLOCKER(ω) is NP-hard for triangle-free graphs. (\Rightarrow VERTEX COVER) $\Rightarrow \langle \overline{\sigma} \rangle \land \langle \overline{z} \rangle \land \langle \overline{z} \rangle$

H-FREE GRAPHS, $\pi = \chi$

Theorem [Dinner, Paulusma, Picouleau, R., 2015-2017]

Let H be a graph. Then the following holds:

- If H ⊆_i P₄, then CONTRACTION BLOCKER(χ) is polynomial-time solvable for H-free graphs; otherwise it is NP-hard for H-free graphs.
- If H ⊆_i P₄ or H ⊆_i P₃ ⊕ K₁, then DELETION BLOCKER(χ) is polynomial-time solvable for H-free graphs; otherwise it is NP-hard or co-NP-hard for H-free graphs.

1 INTRODUCTION

2 PREVIOUS WORK

3 VERTEX DELETION, EDGE CONTRACTION, $\pi \in \{\alpha, \omega, \chi\}$ • SUBCLASSES OF PERFECT GRAPHS

• H-FREE GRAPHS

4 CONCLUSION

→ < Ξ → <</p>

CONCLUSION

• We presented blocker problems and their relations with other graph problems.

CONCLUSION

- We presented blocker problems and their relations with other graph problems.
- In particular we focused on the following two problems and presented results for subclasses of perfect graphs and for *H*-free graphs.

CONTRACTION BLOCKER(π)

Instance: a graph G and two integers $d, k \ge 0$ Question: can G be k-contracted into G' with $\pi(G') \le \pi(G) - d$?

DELETION BLOCKER(π)Instance:a graph G and two integers $d, k \ge 0$ Question:can G be k-vertex-deleted in G' with $\pi(G') \le \pi(G) - d$?

OPEN PROBLEMS

What is the complexity of

- (1-)CONTRACTION BLOCKER(α) and (1-)DELETION BLOCKER(α) for interval graphs?
- 1-CONTRACTION BLOCKER(α) and 1-DELETION BLOCKER(α) for chordal graphs?
- CONTRACTION BLOCKER(ω) for $(K_3 \oplus K_1)$ -free graphs?
- 1-CONTRACTION BLOCKER(π) and 1-DELETION BLOCKER(π) for *H*-free graphs with k = 1 and $\pi \in \{\omega, \alpha\}$?

Thank you for your attention!