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TYPICAL GRAPH MODIFICATION PROBLEM
Usually, in a graph modification problem we aim to

@ modify a given graph G via a small number of operations

B. Ries (DS&OR) Blocker problems ECCO 2017 4 /52



TYPICAL GRAPH MODIFICATION PROBLEM
Usually, in a graph modification problem we aim to
@ modify a given graph G via a small number of operations

@ into some other graph H that has some desired property,

B. Ries (DS&OR) Blocker problems ECCO 2017 4 /52



TYPICAL GRAPH MODIFICATION PROBLEM
Usually, in a graph modification problem we aim to

@ modify a given graph G via a small number of operations

@ into some other graph H that has some desired property,

@ often describing a graph class to which H must belong.

B. Ries (DS&OR) Blocker problems ECCO 2017 4 /52



TYPICAL GRAPH MODIFICATION PROBLEM
Usually, in a graph modification problem we aim to

@ modify a given graph G via a small number of operations

@ into some other graph H that has some desired property,

@ often describing a graph class to which H must belong.

Examples:

@ What is the fewest number of edges to be deleted from a graph G to
make it become a permutation graph? [Burzyn et al., 2006]

B. Ries (DS&OR) Blocker problems ECCO 2017 4 /52



TYPICAL GRAPH MODIFICATION PROBLEM

Usually, in a graph modification problem we aim to
@ modify a given graph G via a small number of operations
@ into some other graph H that has some desired property,

@ often describing a graph class to which H must belong.

Examples:

@ What is the fewest number of edges to be deleted from a graph G to
make it become a permutation graph? [Burzyn et al., 2006]

@ What is the fewest number of edges to be added to a graph G to
make it become chordal bipartite? [sritharan, 2016]

B. Ries (DS&OR) Blocker problems ECCO 2017 4 /52



TYPICAL GRAPH MODIFICATION PROBLEM

Usually, in a graph modification problem we aim to
@ modify a given graph G via a small number of operations
@ into some other graph H that has some desired property,

@ often describing a graph class to which H must belong.

Examples:

@ What is the fewest number of edges to be deleted from a graph G to
make it become a permutation graph? [Burzyn et al., 2006]

@ What is the fewest number of edges to be added to a graph G to
make it become chordal bipartite? [sritharan, 2016]

@ Is it possible to make a graph bipartite with at most k edge
ContractionS? [Heggernes et al., 2013]
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TYPICAL GRAPH MODIFICATION PROBLEM

A variety of classical graph-theoretic problems can be captured that way.
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Instead of specifying a graph class to which H must belong, we may specify
a graph parameter 7 and then,

@ given a graph G, a set S of one or more graph operations, an integer
k, we aim to

» transform G into a graph G’ using at most k operations from S,

» such that 7(G’) < 7(G) — d for some threshold d > 0.

Such problems are called blocker problems.

@ The edges/vertices involved can be viewed as "blocking" the
parameter 7.
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BLOCKER PROBLEMS

Instead of specifying a graph class to which H must belong, we may specify
a graph parameter 7 and then,

@ given a graph G, a set S of one or more graph operations, an integer
k, we aim to

» transform G into a graph G’ using at most k operations from S,

» such that 7(G’) < 7(G) — d for some threshold d > 0.

Such problems are called blocker problems.

@ The edges/vertices involved can be viewed as "blocking" the
parameter 7.

@ lIdentifying such sets may have some nice applications.
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BLOCKER PROBLEMS - APPLICATIONS!

@ Consider for instance the blocker problem with
» m=w and S = {vertex deletion}.

Lfrom [Boginski et al., 2014]
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BLOCKER PROBLEMS - APPLICATIONS!

@ Consider for instance the blocker problem with
» m=w and S = {vertex deletion}.

@ So, we are interested in finding a subset of k vertices to be deleted, in
order to make the clique number decrease by at least d units.

@ In a (social or biological or communication or ...) network, a clique
represents a cohesive cluster.

» Attacker's objective: delete a small set of vertices to restrict the size of
a largest cohesive cluster in the remaining graph.

» Defender’s objective: identify a set of vertices whose deletion would
substantially decrease the size of largest cohesive cluster, in order to
protect these vertices.

Lfrom [Boginski et al., 2014]
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BLOCKER PROBLEMS

There exist several relations to other graph problems:

e HADWIGER NUMBER: given a graph G and an integer r, does G contain
Kr as a minor? [Golovach et al., 2014]

» m=q, S = {edge contraction}, k=n—r, d = a(G) — 1.
@ s-CLUB CONTRACTION: given a graph G, an integer k and a fixed

integer s, can G be k-contracted into a graph with diameter at most
5? [Golovach et al., 2014]

» for s =1: m = o, S = {edge contraction}, d = a(G) — 1.

e VERTEX COVER: given a graph G and an integer k, does G contain a
subset V'’ of at most k vertices such that each edge has at least one
endvertex in V'?7
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BLOCKER PROBLEMS

There exist several relations to other graph problems:

e HADWIGER NUMBER: given a graph G and an integer r, does G contain
Kr as a minor? [Golovach et al., 2014]

» m=q, S = {edge contraction}, k=n—r, d = a(G) — 1.
@ s-CLUB CONTRACTION: given a graph G, an integer k and a fixed

integer s, can G be k-contracted into a graph with diameter at most
5? [Golovach et al., 2014]

» for s =1: m = o, S = {edge contraction}, d = a(G) — 1.
e VERTEX COVER: given a graph G and an integer k, does G contain a

subset V'’ of at most k vertices such that each edge has at least one
endvertex in V'?

» for triangle-free graphs: m = w, S = {vertex deletion}, d = 1.
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7 and S

@ Graph parameters considered so far:

» independence number «;
» chromatic number y;

» clique number w;

» vertex cover number f3;

» matching number p.
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7 and S

@ Graph parameters considered so far:

>

>

independence number «;
chromatic number ;
clique number w;

vertex cover number f3;

matching number f.

@ Set S always consisted of a single operation:

>

>

>

vertex deletion;
edge deletion;

edge addition.
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MATCHING NUMBER u

o T =L,

o S={edge deletion}
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MATCHING NUMBER

o T=p;

o S={edge deletion}

Given a graph G and an integer k, is it possible to find k edges to delete
such that the resulting graph G’ satisfies u(G’) < u(G) — d?

B. Ries (DS&OR) Blocker problems ECCO 2017 11 / 52



MATCHING NUMBER

o T=p;
o S={edge deletion}

Given a graph G and an integer k, is it possible to find k edges to delete
such that the resulting graph G’ satisfies u(G’) < u(G) — d?

Theorem [Bentz et al., 2010]

Even if d is fixed, the problem is NP-complete in bipartite graphs. But it is
polynomial-time solvable in grid graphs and graphs of bounded treewidth.
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INDEPENDENCE NUMBER «o

QT =,

o S={vertex deletion}
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e T =uq;

o S={vertex deletion}

Given a graph G and an integer k, is it possible to find k vertices to delete
such that the resulting graph G’ satisfies o(G’) < a(G) — d?
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INDEPENDENCE NUMBER «

e T =uq;

o S={vertex deletion}

Given a graph G and an integer k, is it possible to find k vertices to delete
such that the resulting graph G’ satisfies o(G’) < a(G) — d?

Theorem [Costa et al., 2010]
The problem is polynomial-time solvable in bipartite graphs. J

B. Ries (DS&OR) Blocker problems ECCO 2017 12 / 52



CHROMATIC NUMBER yx

° T =X

o S={edge deletion}
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CHROMATIC NUMBER y

°T=X;

o S={edge deletion}

Given a graph G and an integer k, is it possible to find k edges to delete
such that the resulting graph G’ satisfies x(G') < x(G) — d?
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CHROMATIC NUMBER y

°oT=X;
o S={edge deletion}

Given a graph G and an integer k, is it possible to find k edges to delete
such that the resulting graph G’ satisfies x(G’) < x(G) — d?

Theorem [Bazgan et al., 2015]
The problem is polynomial-time solvable in threshold graphs. If d is fixed it
is polynomial-time solvable in split graphs.
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© VERTEX DELETION, EDGE CONTRACTION, 7 € {a,w, x}
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EDGE CONTRACTION

We will focus on two operations:

@ vertex deletion and
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k-CONTRACTED, k-VERTEX-DELETED

k-contracted

Let G, G’ be two graphs. We say that G can be k-contracted into the
graph G’ if G can be modified into G’ by a sequence of at most k edge
contractions.
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k-CONTRACTED, k-VERTEX-DELETED

k-contracted

Let G, G’ be two graphs. We say that G can be k-contracted into the
graph G’ if G can be modified into G’ by a sequence of at most k edge
contractions.

k-vertex-deleted

Let G, G’ be two graphs. We say that G can be k-vertex-deleted into the
graph G’ if G can be modified into G’ by a sequence of at most k vertex
deletions.
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PROBLEMS WITH 7 € {a,w, x}

CONTRACTION BLOCKER(7)
Instance:  a graph G and two integers d, k > 0
Question: can G be k-contracted into G’ with 7(G’) < 7(G) — d?
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Instance:  a graph G and two integers d, k > 0
Question: can G be k-contracted into G’ with 7(G’) < 7(G) — d?

DELETION BLOCKER (7r)
Instance:  a graph G and two integers d, k > 0
Question: can G be k-vertex-deleted in G’ with 7(G’) < 7(G) — d?
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PROBLEMS WITH 7 € {a,w, x}

CONTRACTION BLOCKER(7)
Instance:  a graph G and two integers d, k > 0
Question: can G be k-contracted into G’ with 7(G’) < 7(G) — d?

DELETION BLOCKER (7r)
Instance:  a graph G and two integers d, k > 0
Question: can G be k-vertex-deleted in G’ with 7(G’") < n(G) — d?

o If d is not part of the input, but fixed instead, the corresponding
problems will be denoted by:

» d-CONTRACTION BLOCKER ()

» Jd-DELETION BLOCKER(7)
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© VERTEX DELETION, EDGE CONTRACTION, 7 € {a,w, x}
@ SUBCLASSES OF PERFECT GRAPHS
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BIPARTITE GRAPHS

o If m € {w, x}, CONTRACTION BLOCKER(7) is trivial in bipartite graphs.
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BIPARTITE GRAPHS
o If m € {w, x}, CONTRACTION BLOCKER(7) is trivial in bipartite graphs.

e For m = q, it turns out that CONTRACTION BLOCKER(«) is NP-hard
for bipartite graphs.

Theorem [Paulusma, Picouleau, R., 2017]
CONTRACTION BLOCKER(«) is NP-hard for bipartite graphs. J

@ We use a reduction from 1-CONTRACTION BLOCKER (), which is
NP-complete on cobipartite graphs.

@ Notice that bipartite graphs are not closed under edge contraction;
therefore membership to NP cannot be established.

B. Ries (DS&OR) Blocker problems ECCO 2017 19 / 52



TREES

Theorem [Paulusma, Picouleau, R., 2017]

CONTRACTION BLOCKER(«) is linear-time solvable on trees.
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TREES

Theorem [Paulusma, Picouleau, R., 2017]

CONTRACTION BLOCKER(«) is linear-time solvable on trees.

Idea of the proof:
@ Notice the following:

» a(T)+ u(T) = n, where n is the number of vertices in T;
thus, if d > n— p(T), the answer is NO.
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» a(T)+ u(T) = n, where n is the number of vertices in T;
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TREES

Theorem [Paulusma, Picouleau, R., 2017]

CONTRACTION BLOCKER(«) is linear-time solvable on trees.

Idea of the proof:
@ Notice the following:

» a(T)+ u(T) = n, where n is the number of vertices in T;
thus, if d > n— p(T), the answer is NO.

> Trees are closed under edge contraction!
o Contracting an edge: T = T'.
@ An edge contraction does not increase « or .

o Since a(T)+u(T)=nand a(T")+ u(T") = n—1, it follows that:
> either o(T') =«(T) -1,
> or p(T') = pu(T) = 1.
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TREES

@ Suppose that d < n—2u(T).
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» n—2u(T) vertices are unsaturated by a maximum matching M.
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TREES
@ Suppose that d < n—2u(T).

» n—2u(T) vertices are unsaturated by a maximum matching M.

» For any edge uv, such that u is unsaturated, v must be saturated since
M is maximum.
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TREES

@ Suppose that d < n—2u(T).

» n—2u(T) vertices are unsaturated by a maximum matching M.

» For any edge uv, such that u is unsaturated, v must be saturated since
M is maximum.

» Contracting such an edge = T’ such that pu(T') = u(T).

» Hence, o(T') =a(T) — 1.

B. Ries (DS&OR) Blocker problems ECCO 2017 22 / 52



TREES

@ Suppose that d < n—2u(T).

» n—2u(T) vertices are unsaturated by a maximum matching M.

v

For any edge uv, such that v is unsaturated, v must be saturated since
M is maximum.

v

Contracting such an edge = T’ such that u(T') = u(T).

v

Hence, o(T') = a(T) — 1.

v

= if d < n—2u(T), contracting d such edges yields a tree T’ with
a(TY=a(T) —d.
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TREES

@ Suppose that d < n—2u(T).

» n—2u(T) vertices are unsaturated by a maximum matching M.

v

For any edge uv, such that v is unsaturated, v must be saturated since
M is maximum.

v

Contracting such an edge = T’ such that u(T') = u(T).

v

Hence, o(T') = a(T) — 1.

v

= if d < n—2u(T), contracting d such edges yields a tree T’ with
a(TY=a(T) —d.

v

= if k > d, the answer is YES, otherwise the answer is NO.
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TREES

@ Suppose that d > n—2u(T).
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TREES

@ Suppose that d > n—2u(T).

» First contract the n — 2u(T) edges with exactly one endvertex that is
unsaturated by M.

B. Ries (DS&OR) Blocker problems ECCO 2017 23 / 52



TREES

@ Suppose that d > n—2u(T).

» First contract the n — 2u(T) edges with exactly one endvertex that is
unsaturated by M.

» = tree T with u(T") = pu(T) and (T') = (T) — (n—2u(T)).
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TREES

@ Suppose that d > n—2u(T).

» First contract the n — 2u(T) edges with exactly one endvertex that is
unsaturated by M.

» = tree T with u(T") = pu(T) and (T') = (T) — (n—2u(T)).

» M is now a perfect matching in T'.
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TREES

@ Suppose that d > n—2u(T).

» First contract the n — 2u(T) edges with exactly one endvertex that is
unsaturated by M.

» = tree T with u(T") = pu(T) and (T') = (T) — (n—2u(T)).
» M is now a perfect matching in T'.

» Hence, contracting any edge in T’ will result in a tree T" with
w(T"Yy=pw(T")—1and a(T") = a(T').
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TREES
@ Suppose that d > n—2u(T).

» First contract the n — 2u(T) edges with exactly one endvertex that is
unsaturated by M.

» = tree T' with pu(T') = p(T) and a(T') = (T) — (n—2u(T)).
» M is now a perfect matching in T".

» Hence, contracting any edge in T’ will result in a tree T" with
w(T"Yy=pw(T")—1and a(T") = a(T').

» But if we contract an edge uv € M, the new vertex becomes
unsaturated by M’ = M\ {uv}.

» Now we can contract an edge (uv)w and obtain 7" with
w(T")=pw(T"”) and «(T") = a(T") — 1.
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TREES
@ Suppose that d > n—2u(T).

>

First contract the n — 2u(T) edges with exactly one endvertex that is

unsaturated by M.

= tree T/ with u(T") = u(T) and a(T") = a(T) — (n — 2u(T)).

M is now a perfect matching in T'.

Hence, contracting any edge in T’ will result in a tree T with
w(T"Yy=pw(T")—1and a(T") = a(T').

But if we contract an edge uv € M, the new vertex becomes
unsaturated by M’ = M\ {uv}.

Now we can contract an edge (uv)w and obtain T with
w(T")=pw(T"”) and «(T") = a(T") — 1.

We can show that this is optimal.
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TREES
@ Suppose that d > n—2u(T).

>

|

>

First contract the n — 2u(T) edges with exactly one endvertex that is
unsaturated by M.

= tree T’ with (7)) = p(T) and &(T") = a(T) — (n—2u(T)).
M is now a perfect matching in T'.

Hence, contracting any edge in T’ will result in a tree T with
w(T"Yy=pw(T")—1and a(T") = a(T').

But if we contract an edge uv € M, the new vertex becomes
unsaturated by M’ = M\ {uv}.

Now we can contract an edge (uv)w and obtain T with
w(T")=pw(T"”) and «(T") = a(T") — 1.

We can show that this is optimal.

= if k > 2(d + p(T)) — n, the answer is YES, otherwise it's NO.
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TREES - BIPARTITE GRAPHS

@ We have

u(G) +a(G) = n
for any bipartite graph G!
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TREES - BIPARTITE GRAPHS

@ We have
w(G)+ a(G)=n
for any bipartite graph G!
@ But bipartite graphs are not closed under edge contraction!
@ Being closed under edge contraction plays an important role in our

proof!

Theorem [Costa et al., 2011], [Bazgan et al., 2011]

For m € {a,w, x}, DELETION BLOCKER(7) is polynomial-time solvable in
bipartite graphs.
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INTERVAL GRAPHS

Interval graph

A graph G is an interval graph if one can associate with each vertex in G
an interval on the real line such that two vertices are adjacent in G if and
only the corresponding intervals intersect.
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PROPERTIES OF INTERVAL GRAPHS

@ Interval graphs do not contain any induced cycle of length 4.
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@ An interval graph G on n vertices contains at most n maximal cliques.

@ All maximal cliques in an interval graph G can be found in polynomial
time.
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PROPERTIES OF INTERVAL GRAPHS

@ Interval graphs do not contain any induced cycle of length 4.
@ An interval graph G on n vertices contains at most n maximal cliques.

@ All maximal cliques in an interval graph G can be found in polynomial
time.

@ Two technical Lemmas are needed as well.
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INTERVAL GRAPHS

Theorem [Dinner, Paulusma, Picouleau, R., 2015]

Let 7 € {w, x}. Then CONTRACTION BLOCKER(7) can be solved in
polynomial time on interval graphs.
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Let 7 € {w, x}. Then CONTRACTION BLOCKER(7) can be solved in
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INTERVAL GRAPHS

Theorem [Dinner, Paulusma, Picouleau, R., 2015]

Let m € {w, x}. Then CONTRACTION BLOCKER(7) can be solved in
polynomial time on interval graphs.

Using similar arguments, we can also show the following:

Theorem [Dinner, Paulusma, Picouleau, R., 2015]

Let m € {w, x}. Then DELETION BLOCKER(7) can be solved in polynomial
time on interval graphs.
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CHORDAL GRAPHS

The previous results cannot be generalized to chordal graphs:

Theorem [Paulusma, Picouleau, R., 2016]

Let 7 € {w, x}. Then 1-CONTRACTION BLOCKER(7) and 1-DELETION
BLOCKER (7) are NP-complete for chordal graphs.
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CHORDAL GRAPHS

The previous results cannot be generalized to chordal graphs:

Theorem [Paulusma, Picouleau, R., 2016]

Let 7 € {w, x}. Then 1-CONTRACTION BLOCKER(7) and 1-DELETION
BLOCKER (7) are NP-complete for chordal graphs.

@ For m = «, the complexity of both problems, CONTRACTION
BLOCKER () and DELETION BLOCKER(«), is unknown in interval
graphs.

@ For m = «, the complexity of both problems, 1-CONTRACTION

BLOCKER(«v) and 1-DELETION BLOCKER(a), is unknown in chordal
graphs.
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COGRAPHS

Cograph

A graph G is a cograph if it does not contain any path on 4 vertices as an
induced subgraph.
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COGRAPHS

Cograph

A graph G is a cograph if it does not contain any path on 4 vertices as an
induced subgraph.

Theorem [Dinner, Paulusma, Picouleau, R., 2015]

For m € {a,w, x}, both CONTRACTION BLOCKER(7) and DELETION
BLOCKER (7) can be solved in polynomial time for cographs.
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SPLIT GRAPHS
Split graph

A graph G is a split graph if its vertex set can be partitioned into a clique
and a stable set.
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A graph G is a split graph if its vertex set can be partitioned into a clique
and a stable set.

Theorem [Costa et al., 2011]

For m € {a,w, x}, DELETION BLOCKER () is NP-complete and
d-DELETION BLOCKER(7) is polynomial time solvable for split graphs.
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SPLIT GRAPHS

Split graph
A graph G is a split graph if its vertex set can be partitioned into a clique
and a stable set.

Theorem [Costa et al., 2011]

For m € {a,w, x}, DELETION BLOCKER(7) is NP-complete and
d-DELETION BLOCKER(7) is polynomial time solvable for split graphs.

Theorem [Dinner, Paulusma, Picouleau, R., 2015]

For m € {a,w, x}, CONTRACTION BLOCKER(7) is NP-complete and
d-CONTRACTION BLOCKER(7) is polynomial time solvable for split graphs.
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SUBCLASSES OF PERECT GRAPHS

CONTRACTION BLOCKER () DELETION BLOCKER(?T)
Class T=« ‘ T=w=YX T=« T=w=YX
Trees P P p* P
Bipartite NP-h P pP* P
Cobipartite | d = 1: NP-c NP-c P p*

d fixed: P

Cograph P P P P
Split NP-c NP-c NP-c* NP-c*

d fixed: P d fixed: P d fixed: P* | d fixed: P*
Interval P P
Chordal NP-c d =1: NP-c NP-c d =1: NP-c
Perfect d=1: NP-h | d = 1: NP-h NP-c d =1: NP-c
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P~-FREE GRAPHS

@ Cographs are equivalent to P,-free graphs, i.e. graphs not containing
an induced path on 4 vertices.
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@ Cographs are equivalent to P,-free graphs, i.e. graphs not containing
an induced path on 4 vertices.

@ Split graphs do not contain any induced path on 5 vertices, i.e. they
are Ps-free.

@ So we obtain the following dichotomy from the previous results for
P,-free graphs, i.e. not containing any induced path on £ vertices.
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P~-FREE GRAPHS

@ Cographs are equivalent to P,-free graphs, i.e. graphs not containing
an induced path on 4 vertices.

@ Split graphs do not contain any induced path on 5 vertices, i.e. they
are Ps-free.

@ So we obtain the following dichotomy from the previous results for
P,-free graphs, i.e. not containing any induced path on £ vertices.

Theorem [Dinner, Paulusma, Picouleau, R., 2015]

Let 7 € {a,w, x}. Then CONTRACTION BLOCKER(7) and DELETION
BLOCKER (7) can be solved in polynomial time in Py-free graphs if £ < 4
and NP-hard if ¢ > 5.
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© VERTEX DELETION, EDGE CONTRACTION, 7 € {a,w, x}
e H-FREE GRAPHS
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DEFINITIONS

H-free graph

Let G, H be two graph. Then G is said to be H-free, if it does not contain
H as an induced subgraph.
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DEFINITIONS

H-free graph

Let G, H be two graph. Then G is said to be H-free, if it does not contain
H as an induced subgraph.

o If H is an induced subgraph of G, we write H C; G.

@ Let Gi, Gy be two vertex-disjoint graphs. The union G; & G, creates
the disjoint union of G; and G,.
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DEFINITIONS

H-free graph

Let G, H be two graph. Then G is said to be H-free, if it does not contain
H as an induced subgraph.

o If H is an induced subgraph of G, we write H C; G.

@ Let Gi, Gy be two vertex-disjoint graphs. The union G; & G, creates
the disjoint union of G; and G.

clique-proof

We say that a graph class G is clique-proof if

Geg — GHGegG, GaK,eg
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SOME USEFUL RESULTS

Theorem [Paulusma, Picouleau, R., 2016]

If CLIQUE is NP-complete for a clique-proof graph class G, then
CONTRACTION BLOCKER(w) is co-NP-hard for G, even if d = k = 1.
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Theorem [Paulusma, Picouleau, R., 2016]

If CLIQUE is NP-complete for a clique-proof graph class G, then
CONTRACTION BLOCKER(w) is co-NP-hard for G, even if d = k = 1.

Theorem kel et al., 2011

Let H be a graph. If H C; P, or H C; P3 & Ki, then the COLORING
problem is polynomial-time solvable for H-free graphs, otherwise it is
NP-hard for H-free graphs.
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SOME USEFUL RESULTS

Theorem [Paulusma, Picouleau, R., 2016]

If CLIQUE is NP-complete for a clique-proof graph class G, then
CONTRACTION BLOCKER(w) is co-NP-hard for G, even if d = k = 1.

Theorem kel et al., 2011

Let H be a graph. If H C; P, or H C; P3 & Ki, then the COLORING
problem is polynomial-time solvable for H-free graphs, otherwise it is
NP-hard for H-free graphs.

Theorem [Paulusma, Picouleau, R., 2017]

1-DELETION BLOCKER(«), with kK = 1, is NP-hard even for graphs of girth
at least g, for every fixed g > 3.

B. Ries (DS&OR) Blocker problems ECCO 2017 43 / 52



H-FREE GRAPHS, 7 € {w,a}

Theorem [Dinner, Paulusma, Picouleau, R., 2015-2017]

Let H be a graph. Then the following holds:

e If HC; P,, then DELETION BLOCKER(a) and CONTRACTION
BLOCKER () are polynomial-time solvable for H-free graphs; otherwise
both are NP-hard or co-NP-hard for H-free graphs.

e If HC; P4, then DELETION BLOCKER(w) is polynomial-time solvable
for H-free graphs; otherwise it is NP-hard or co-NP-hard for H-free
graphs.

o Let H+# K3 ® Ki. If HC; Ps or H C; paw, then CONTRACTION
BLOCKER(w) is polynomial-time solvable for H-free graphs; otherwise
it is NP-hard or co-NP-hard for H-free graphs.

B. Ries (DS&OR) Blocker problems ECCO 2017 44 / 52



H-FREE GRAPHS

Theorem [Paulusma, Picouleau, R., 2017]

Let H be a graph. If H C; P4, then CONTRACTION BLOCKER(«) is

polynomial-time solvable for H-free graphs, otherwise it is NP-hard for
H-free graphs.
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Let H be a graph. If H C; P4, then CONTRACTION BLOCKER(«) is

polynomial-time solvable for H-free graphs, otherwise it is NP-hard for
H-free graphs.

Idea of the proof:

e If H C; Py, use previous result on cographs.
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» If r is odd, use the result on bipartite graphs.
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H-FREE GRAPHS

Theorem [Paulusma, Picouleau, R., 2017]

Let H be a graph. If H C; P4, then CONTRACTION BLOCKER(«) is

polynomial-time solvable for H-free graphs, otherwise it is NP-hard for
H-free graphs.

Idea of the proof:
o If H C; Py, use previous result on cographs.
@ Otherwise, suppose that H contains a cycle C,.
» If r is odd, use the result on bipartite graphs.
» If r is even, H either contains C4 or 2P;; use previous result on split

graphs.
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H-FREE GRAPHS

Idea of the proof (continued):

@ So we may assume that H contains no cycle, hence is a forest.
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H-FREE GRAPHS

Idea of the proof (continued):

@ So we may assume that H contains no cycle, hence is a forest.

» If H contains 3P4, use previous result on cobipartite graphs.
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H-FREE GRAPHS

Idea of the proof (continued):

@ So we may assume that H contains no cycle, hence is a forest.

» If H contains 3P4, use previous result on cobipartite graphs.

» So suppose that H is 3P;-free; hence it must contain 2P, otherwise
H C; Py; use previous result on split graphs.
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H-FREE GRAPHS

Theorem [Paulusma, Picouleau, R., 2017]

Let H be a graph. If H C; P,, then DELETION BLOCKER(«) is

polynomial-time solvable for H-free graphs, otherwise it is NP-hard for
H-free graphs.
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Idea of the proof:

o If H C; Py, use previous result on cographs.

e Otherwise, suppose that H contains a cycle C,.
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Theorem [Paulusma, Picouleau, R., 2017]

Let H be a graph. If H C; P,, then DELETION BLOCKER(«) is

polynomial-time solvable for H-free graphs, otherwise it is NP-hard for
H-free graphs.

Idea of the proof:

o If H C; Py, use previous result on cographs.

e Otherwise, suppose that H contains a cycle C,.

» If r =3, use previous result on graphs of girth at least g = 4.
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Theorem [Paulusma, Picouleau, R., 2017]

Let H be a graph. If H C; P,, then DELETION BLOCKER(«) is

polynomial-time solvable for H-free graphs, otherwise it is NP-hard for
H-free graphs.

Idea of the proof:

o If H C; Py, use previous result on cographs.

e Otherwise, suppose that H contains a cycle C,.
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» If r > 4, use previous result on split graphs.
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Let H be a graph. If H C; P,, then DELETION BLOCKER(«) is

polynomial-time solvable for H-free graphs, otherwise it is NP-hard for
H-free graphs.

Idea of the proof:

o If H C; Py, use previous result on cographs.

@ Otherwise, suppose that H contains a cycle C,.
» If r =3, use previous result on graphs of girth at least g = 4.
» If r > 4, use previous result on split graphs.

@ So we may assume now that H is a forest.
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H-FREE GRAPHS

Theorem [Paulusma, Picouleau, R., 2017]

Let H be a graph. If H C; P,, then DELETION BLOCKER(«) is

polynomial-time solvable for H-free graphs, otherwise it is NP-hard for
H-free graphs.

Idea of the proof:

o If H C; Py, use previous result on cographs.

@ Otherwise, suppose that H contains a cycle C,.
» If r =3, use previous result on graphs of girth at least g = 4.
» If r > 4, use previous result on split graphs.

@ So we may assume now that H is a forest.

» If 2P, C; H, use previous result on split graphs.
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H-FREE GRAPHS

Theorem [Paulusma, Picouleau, R., 2017]

Let H be a graph. If H C; P,, then DELETION BLOCKER(«) is

polynomial-time solvable for H-free graphs, otherwise it is NP-hard for
H-free graphs.

Idea of the proof:

o If H C; Py, use previous result on cographs.

@ Otherwise, suppose that H contains a cycle C,.

» If r =3, use previous result on graphs of girth at least g = 4.
» If r > 4, use previous result on split graphs.

@ So we may assume now that H is a forest.

» If 2P, C; H, use previous result on split graphs.

» If 3P; C; H, we use the fact the DELETION BLOCKER (w) is NP-hard
for triangle-free graphs. (= VERTEX COVER)
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H-FREE GRAPHS, m =y

Theorem [Dinner, Paulusma, Picouleau, R., 2015-2017]

Let H be a graph. Then the following holds:

e If HC; Py, then CONTRACTION BLOCKER(Y) is polynomial-time
solvable for H-free graphs; otherwise it is NP-hard for H-free graphs.

o If HC; Py or HC; P3® Ki, then DELETION BLOCKER (y) is
polynomial-time solvable for H-free graphs; otherwise it is NP-hard or
co-NP-hard for H-free graphs.
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CONCLUSION

@ We presented blocker problems and their relations with other graph
problems.
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CONCLUSION

@ We presented blocker problems and their relations with other graph
problems.

@ In particular we focused on the following two problems and presented
results for subclasses of perfect graphs and for H-free graphs.

CONTRACTION BLOCKER(7)
Instance:  a graph G and two integers d, k > 0
Question: can G be k-contracted into G’ with 7(G’) < 7(G) — d?

DELETION BLOCKER (1)
Instance:  a graph G and two integers d, k > 0
Question: can G be k-vertex-deleted in G’ with 7(G') < n(G) — d?
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OPEN PROBLEMS

What is the complexity of

(1-)CONTRACTION BLOCKER () and (1-)DELETION BLOCKER(«) for
interval graphs?

@ 1-CONTRACTION BLOCKER(«) and 1-DELETION BLOCKER(«) for
chordal graphs?

CONTRACTION BLOCKER(w) for (K3 @ Ki)-free graphs?

1-CONTRACTION BLOCKER(7) and 1-DELETION BLOCKER(7) for
H-free graphs with k =1 and 7 € {w, a}?
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Thank you for your attention!
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