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Problem: Minimum Length Triangulation of Convex Polygon

Input: The vertices vy, ..., Vv, of a convex polygon P.
Goal: Find a triangulation of P that minimizes total length.

e Dynamic programming solves this in O(n®) time
e see for instance: textbook by Corman, Leiserson, Rivest, Stein

Old questions

e How can we reach a better time complexity?
e And if the answer should be negative:
How can we prove that the cubic running time is best possible?
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Structure of talk

In this talk, | will discuss tools for establishing
lower bounds on the time complexity of certain
(mainly polynomially solvable) problems

Algebraic computation tree
3-SUM conjecture
Orthogonal vectors

All-Pairs-Shortest-Paths

A

Some other related stuff
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Algebraic computation tree

Lower bound techniques for algorithmic problems



Algebraic computation tree (1)

Back in 1983, Michael Ben-Or analyzed the Algebraic Computation Tree
model of computation (ACT, for short). An ACT is a binary tree, where
each node v has one of the following three roles.
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Algebraic computation tree (1)

Back in 1983, Michael Ben-Or analyzed the Algebraic Computation Tree
model of computation (ACT, for short). An ACT is a binary tree, where
each node v has one of the following three roles.

Computation node

The node has a single child and computes value f(v) as

f(v) =f(x)of(y) or f(v) = f(x).
Here f(x) and f(y) are values of ancestor nodes of v, or input values, or
arbitrary real constants. And o € {+,—, X, /}.
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Comparison node

The node has two children labeled true and false, and performs test
f(x)>0 f(x)=0 f(x) >0
for some ancestor x of v.
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Algebraic computation tree (1)

Back in 1983, Michael Ben-Or analyzed the Algebraic Computation Tree
model of computation (ACT, for short). An ACT is a binary tree, where
each node v has one of the following three roles.

Computation node

The node has a single child and computes value f(v) as

f(v) =f(x)of(y) or f(v) = f(x).
Here f(x) and f(y) are values of ancestor nodes of v, or input values, or
arbitrary real constants. And o € {+,—, X, /}.

Comparison node

The node has two children labeled true and false, and performs test
f(x)>0 f(x)=0 f(x) >0
for some ancestor x of v.

The node is a leaf, labeled with ACCEPT or REJECT.
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Algebraic computation tree (2)

An Algebraic computation tree
o labels every input point (xi,...,x,) € R” with ACCEPT/REJECT
e solves membership problem for underlying set A of accepted points

Theorem (Ben-Or, 1983; based on results of Milnor and Thom)

Let A C R", and let #A be the number of connected components of A.
Then any algebraic computation tree for A has worst case height of at
least 0.38 log(#A) — 0.61n.

Small (but difficult) technical improvements by Seiferas (1988); A.C.C.
Yao (1991, 1995); Grigoriev & Vorobjov (1996); Fleischer (1999)
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Algebraic computation tree / Concrete example

Problem: Element Uniqueness

Input: Real numbers xq, ..., x,
Question: Are these numbers pairwise distinct?

e Every permutation (7(1),7(2),...,7(n)) of integers 1,...,n
lies in separate connected component of YES region

e Hence #A > n!

e Hence Ben-Or's theorem yields Q(nlog n) lower bound in ACT
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Algebraic computation tree / More examples

Problem: Sorting

Input: Real numbers x1,...,x,and y3 <y, <--- <y,
Question: s y-list the sorted version of x-list?

Problem: Set Equality

Input: Real numbers xi,...,x, and y1,...,y,
Question: Is y-list a re-ordered version of x-list?

e Ben-Or's theorem yields Q(nlog n) lower bounds in ACT
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Algebraic computation tree / Another example

Problem: Minimum link path

Input: A set of polygonal (pairwise disjoint) obstacles in R? with
altogether n corners; a start point s and a goal t.

Goal: Find polygonal path from s to t that avoids all obstacles
and has minimum number of links.

Theorem (Mitchell, Rote & Woeginger, 1992)

e A minimum link path can be found in O(n? a(n) log® n) time.
e Lower bound Q(nlog n) for decision version in ACT.
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Algebraic computation tree / A final example

Problem: Subset Sum

Input: Positive real numbers xq,..., x,
Question: Does there exist a subset whose elements add up to 1?

Theorem (Dobkin & Lipton 1978, combined with Ben-Or 1983)

SUBSET SUM has Q(n?) lower bound in ACT.

Theorem (Meyer auf der Heide, 1984)

SUBSET SUM has O(n*log n) algorithm in ACT (even in the more
restricted linear decision tree model).
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Algebraic computation tree / Remarks

e Note: Floor and ceiling function are not atomic operations in ACT
e Note: ACT does not support indirect addressing

e Q(nlogn) lower bounds in ACT often deteriorate to (n) in RAM
e There exist (fairly natural) problems with Q(nlog n) lower bound
in ACT and with O(n) algorithm on RAM

e ACT does not require algorithms to be uniform

e Hence: Lower bounds in ACT also hold for non-uniform algorithms
e Hence: Lower bounds in ACT tend to be weak
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3-SUM conjecture
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3-SUM conjecture (1)

Problem: 3-SUM

Input: Positive real numbers xq, ..., x,
Question: Do there exist three indices i, j, k with x; +x; +x, =07

Some known facts about 3-SUM on RAM:

e Solvable in n?logn time (very easy)

e Solvable in n? time (needs some thought)

e Solvable in n?/(log n/loglog n)?/3 time (Grgnlund & Pettie, 2014)

Some known fact about 3-SUM in linear decision tree:
e Solvable in n%2,/logn time (Grgnlund & Pettie, 2014)
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3-SUM conjecture (2)

3-SUM conjecture

For no real € > 0,
there exists an O(n?>~¢) algorithm for 3-SUM on the RAM.

e Folklore conjecture from the 1980s
e Popularized by a 1995 paper of Gajentaan & Overmars
“On a class of O(n?) problems in computational geometry”

Problem: 3-points-on-line

Input: A set of n points in the plane.
Question: Is there a line that contains at least three of these points?
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3-SUM conjecture (3)

f(:c):x3

-1.0 :
: 025 075

e a+b+c=0if and only if (a,a%) and (b, b*) and (c, c?) collinear
(by considering x3 — (a+ b+ ¢)x? + (ab + ac + bc)x — abc = 0)
e Hence 3-SUM conjecture implies lower bound for 3-points-on-line
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M conjecture (4)

Theorem (Gajentaan & Overmars, 1995)

The 3-SUM conjecture implies that
there is no O(n?~¢) algorithm for the following problems:

Deciding whether a planar point set has three points on common line
Deciding whether a set of line segments in R? has a line separator
Deciding whether a given set of strips covers a given rectangle
Deciding whether a given set of triangles covers a given triangle
Deciding whether the union of a set of triangles contains a hole
Deciding whether a rod can be moved through a set of line segment
obstacles from given source to given goal position

e Etc, etc, etc.

Tons of similar results have been derived over the last 20 years.
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Orthogonal vectors
and SETH




Orthogonal vectors (1)

Problem: Orthogonal Vectors

Input: Two n-element sets U, V c R?
Question: Do there exist u € U and v € V with uv =07

Some known facts about Orthogonal Vectors on RAM:

e Solvable in n?d time (trivial)

e The exponent can be lowered from 2 to 2 — const/(log d — log log n)
(Abboud, Williams & Yu, 2015)

Orthogonal Vectors conjecture (Ryan Williams, 2005)

For no real ¢ > 0,
there exists an O(n?~=d<°"t) algorithm for Orthogonal Vectors.
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Orthogonal vectors (2)

Strong Exponential Time Hypothesis (SETH)

For no real € > 0,
the SATISFIABILITY problem with n variables and m = O(n) clauses
can be solved in O(2(1=9)") time.
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Orthogonal vectors (2)

Strong Exponential Time Hypothesis (SETH)

For no real € > 0,
the SATISFIABILITY problem with n variables and m = O(n) clauses
can be solved in O(2(1=9)") time.

Theorem (R. Williams, 2005)

SETH implies the Orthogonal Vectors conjecture.

Consider SATISFIABILITY instance

m-dimensional vectors; every coordinate corresponds to one clause
Split variables into two groups U’ and V' of size n/2

For every truth assignment for U’ create vector:

If clause c is satisfied, coordinate c is set to 0; otherwise set to 1.
e Do the same for truth assignments for V'

e 2"/2 yvectors for U, and 2"/2 vectors for V'
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Orthogonal vectors (3)

Problem: Frechet distance

Input: Given two polygonal routes P and @ with n corners in R?,
Goal: Find monotone parametrizations « : [0,1] — P and 5 : [0,1] — Q,
so that the maximum distance a(x) to 8(x) is minimized.

Some known facts about Frechet distance problem:
e Solvable in n? time (Alt & Godau,1995)
e Solvable in n?logn/loglogn time
(Agarwal, Avraham, Kaplan & Sharir, 2012)
(Buchin, Buchin, Meulemans & Mulzer, 2014)

e Orthogonal Vectors conjecture implies that Frechet distance problem
has no O(n?>~¢) algorithm (Bringmann, 2014)
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ogonal vectors (4)

Orthogonal vectors yields many other quadratic lower bounds:
e for instance: longest common subsequence

e for instance: dynamic time warping distance

e for instance: string edit distance (Levenshtein distance)

It is unknown

e whether Orthogonal Vectors conjecture implies SETH
e whether Orthogonal Vectors implies 3-SUM conjecture
o whether 3-SUM implies Orthogonal Vectors conjecture
e whether 3-SUM implies SETH

e whether SETH implies 3-SUM
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All-Pairs-Shortest-Paths




All-Pairs-Shortest-Paths (1)

Problem: All-Pairs-Shortest-Paths (APSP)

Input: An edge-weighted graph on n vertices.
Goal: Compute lengths of shortest paths between all pairs of vertices.

Some known facts about APSP:
o Floyd-Warshall algorithm (from 1962) solves APSP in O(n®) time.

e Small speed-up to n®/2V'°8" by Williams (2014)
e So far, no O(n®*¢) algorithm has been found for APSP.

APSP conjecture (Vassilevska-Williams & Williams, 2010)

For no real € > 0,
there exists an O(n3~¢) algorithm for APSP.
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All-Pairs-Shortest-Paths (2)

Theorem (Vassilevska-Williams and Williams, 2010)

The APSP conjecture is equivalent to the conjecture that
there is no O(n3~¢) algorithm for the following problems:

Detecting a negative weight triangle in an edge-weighted graph
Finding min weight cycle in graph with non-negative edge weights
Finding the second-shortest s-t-path in an edge-weighted graph
The replacement paths problem in an edge-weighted digraph
Verifying whether a given matrix defines a metric

Verifying a matrix product over (min, +) semiring

Etc, etc, etc.
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TSP and k-opt
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TSP and k-opt

Problem: Travelling Salesman Problem (TSP)

Input: n cities, plus all the distances d(, ) between city pairs
Goal: Find shortest round-trip (TSP tour) through these cities.

k-opt is a popular local search neighborhood for the TSP:
e To improve a given tour, remove k edges and reconnect the pieces
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Fact sheet for k-opt

Goes back to Croes (1958), Flood (1956), Lin (1965), Bock (1958)

Local optima can be hard to find
(exponential lower bound for path following version)
Computing local optima for 20-opt is PLS-complete (Krentel, 1989)

Local optima for k-opt may be sub-optimal (even if k =~ 3n/8)

Local optima for k-opt may be very bad (unbounded worst case ratio)
Local optima for 2-opt may be very bad (worst case ratio Q(v/n))
Local optima for 2-opt may be very bad, even in Euclidean plane
(worst case ratio Q(log n/ loglog n))

Experimental: local optima for Euclidean 2-opt within 5% of optimal
Experimental: local optima for Euclidean 3-opt within 2% of optimal
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Local optima (1)

Problem: k-opt detection

Input: a TSP-instance; a tour T
Question: does the k-opt neighborhood of T contain a shorter tour?
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Local optima (1)

Problem: k-opt detection

Input: a TSP-instance; a tour T
Question: does the k-opt neighborhood of T contain a shorter tour?

Problem: k-opt optimization

Input: a TSP-instance; a tour T
Question: find the shortest tour in the k-opt neighborhood of T
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Local optima (1)

Problem: k-opt detection

Input: a TSP-instance; a tour T
Question: does the k-opt neighborhood of T contain a shorter tour?

Problem: k-opt optimization

Input: a TSP-instance; a tour T
Question: find the shortest tour in the k-opt neighborhood of T

A trivial observation:

For fixed values of k,
both problems can be solved in O(n*) time.

e try all (}) possibilities for removing k edges
e try all 2kk! ways of reflecting and ordering the k resulting tour pieces
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Local optima (2)

Theorem (Marx, 2008)
Problem k-opt detection with parameter k is W[1]-complete.

Theorem (Guo, Hartung, Niedermeier & Suchy, 2013)

Under the Exponential Time Hypothesis (ETH),
in the running time of an algorithm for k-opt detection
the exponent of n must grow at least like k/ log k.

e by fpt-reduction from k-Partitioned Subgraph Isomorphism
e delicate and tedious handling of the parameter
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The case k=2

Any algorithm for 2-opt detection on n cities
needs Q(n?) time in the worst case.

Proof: the algorithm must read & analyze all the input data

Find the hidden zero!

= e
I N = T = S S U EY
=R e e
[ T R S R
R e = B = S = S
e N N S e S S
=R e

= O = =
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The case k=3

Johnson and McGeoch (1997) write in a survey chapter on local search:

To complete our discussion of running times, we need to consider the time
per move as well as the number of moves. This includes the time needed to
find an improving move (or verify that non exists), together with the time
needed to perform the move. In the worst case, 2-opt and 3-opt require
Q(n*) and Q(n?) time respectively to verify local optimality, assuming all
possible moves must be considered.
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The case k=3, continued (1)

Theorem (De Berg, Buchin, Jansen, Woeginger, 2016)

Under the All Pairs Shortest Paths conjecture (APSP),
3-opt detection cannot be solved in Q(n3~) time.

Sketch of proof:

e Take an instance of detecting negative triangle in edge-weighted graph
Order the vertices in a circle

Translate every vertex into two edges, of cost 0 and —oo

The resulting cycle with 2n edges is the starting tour T

The edge-weights (in graph) become distances between cost 0 edges

Remark: We also have a reduction in the other direction
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The case k=3, continued (3)

Q

a o b
o o
Graph TSP
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The case k =4

Johnson and McGeoch (2002) write in a survey chapter on the TSP:

Currently, 2-opt and 3-opt are the main k-opt heuristics used in practice,
introduced respectively by Flood and Croes (1958) and by Bock. In Shen
Lin's influential 1965 study of 3-opt, he concluded that the extra time re-
quired for 4-opt was not worth the small improvement in tour quality it
yielded, and no results have appeared since then to contradict this conclu-
sion.
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The case k = 4, continued (2)

Theorem (De Berg, Buchin, Jansen, Woeginger, 2016)

The 4-opt optimization problem for n cities
can be solved in O(n®) time.

Sketch of proof:

Distinguish 23 - 3! = 48 cases for possible orderings of tour-pieces
Two leaving edges collide, if connected by entering edge

Every leaving edge collides with exactly two other leaving edges
In every case: some pair of leaving edges is not colliding

Check all O(n?) possibilities for the other leaving edges

Optimize positions of not colliding pair in O(n) time
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The case k = 4, continued (3
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Final remarks (1)

To summarize the results on k-opt for k < 4:

e 2-opt in O(n?) time (and that's best possible)
e 3-opt in O(n®) time (and that's best possible)
e Z4-opt in O(n®) time (and that's best possible)
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Final remarks (1)

To summarize the results on k-opt for k < 4:

e 2-opt in O(n?) time (and that’s best possible)
e 3-opt in O(n®) time (and that’s best possible)
e Z4-opt in O(n®) time (and that’s best possible)

Theorem (De Berg, Buchin, Jansen, Woeginger, 2016)

For any fixed k > 2,
the k-opt optimization problem for n cities
can be solved in O(nl2k/3J+1) time.

Theorem (Cygan, Kowalik, Socala, 2017)

For any fixed k > 2,
the k-opt optimization problem for n cities
can be solved in O(n(*/4+<k)k) time, where g — 0.

e In particular: 5-opt in O(n3*) time

GJ Woeginger Lower bound techniques for algorithmic problems 37/40



Final remarks (2)

Unfortunately:

e There are no tools available for proving Q(n*) lower bounds
e There are no tools available for proving Q(n®) lower bounds
o FEtc.

Note that:

e 3-SUM is k = 3 special case of W([1]-hard k-SUM problem

o Negative Weight Triangle is related to W/[1]-hard k-CLIQUE

e Orthogonal Vectors is k = 2 special case of something W/[1]-hard

Possible research direction, perhaps worthwhile:

e Establish cross-connections between small-parameter cases of
various W{1]-hard problems

e Perhaps get Q(n*) lower bound technique along similar lines

GJ Woeginger Lower bound techniques for algorithmic problems 38/40



Final remarks (3)

Problem: Minimum Length Triangulation of Convex Polygon

Input: The vertices vy, ..., v, of a convex polygon P.
Goal: Find a triangulation of P that minimizes total length.

Minimum Length Triangulation of Convex Polygon:
e APSP will not help us in getting Q(n®) lower bound
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Thank you!

HONEY! 2 16 HOME WHATZY NOT a/
HE WAS ALWAYS..

/
IRRATIONAL/ o MY GAD
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RADICALIZED/

Smbc-comics.com
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