Lower bound techniques for algorithmic problems

Gerhard J Woeginger

RWTH Aachen

4 May 2017 — Ecco-2017.Koper.Slovenia

Problem: Minimum Length Triangulation of Convex Polygon

Input: The vertices v_1, \ldots, v_n of a convex polygon P. Goal: Find a triangulation of P that minimizes total length.

- Dynamic programming solves this in $O(n^3)$ time
- see for instance: textbook by Corman, Leiserson, Rivest, Stein

Old questions

- How can we reach a better time complexity?
- And if the answer should be negative: How can we prove that the cubic running time is best possible?

In this talk, I will discuss tools for establishing lower bounds on the time complexity of certain (mainly polynomially solvable) problems

- 1. Algebraic computation tree
- 2. 3-SUM conjecture
- 3. Orthogonal vectors
- 4. All-Pairs-Shortest-Paths
- 5. Some other related stuff

Algebraic computation tree

Algebraic computation tree (1)

Back in 1983, Michael Ben-Or analyzed the Algebraic Computation Tree model of computation (ACT, for short). An ACT is a binary tree, where each node ν has one of the following three roles.

Algebraic computation tree (1)

Back in 1983, Michael Ben-Or analyzed the Algebraic Computation Tree model of computation (ACT, for short). An ACT is a binary tree, where each node v has one of the following three roles.

Computation node

The node has a single child and computes value f(v) as $f(v) = f(x) \circ f(y)$ or $f(v) = \sqrt{f(x)}$. Here f(x) and f(y) are values of ancestor nodes of v, or input values, or arbitrary real constants. And $o \in \{+, -, \times, /\}$. Back in 1983, Michael Ben-Or analyzed the Algebraic Computation Tree model of computation (ACT, for short). An ACT is a binary tree, where each node v has one of the following three roles.

Computation node

The node has a single child and computes value f(v) as

 $f(v) = f(x) \circ f(y)$ or $f(v) = \sqrt{f(x)}$. Here f(x) and f(y) are values of ancestor nodes of v, or input values, or arbitrary real constants. And $o \in \{+, -, \times, /\}$.

Comparison node

The node has two children labeled true and false, and performs test

f(x) > 0 f(x) = 0 $f(x) \ge 0$

for some ancestor x of v.

Back in 1983, Michael Ben-Or analyzed the Algebraic Computation Tree model of computation (ACT, for short). An ACT is a binary tree, where each node v has one of the following three roles.

Computation node

The node has a single child and computes value f(v) as

 $f(v) = f(x) \circ f(y)$ or $f(v) = \sqrt{f(x)}$. Here f(x) and f(y) are values of ancestor nodes of v, or input values, or arbitrary real constants. And $o \in \{+, -, \times, /\}$.

Comparison node

The node has two children labeled true and false, and performs test

f(x) > 0 f(x) = 0 $f(x) \ge 0$

for some ancestor x of v.

Output node

The node is a leaf, labeled with ACCEPT or REJECT.

An Algebraic computation tree

- labels every input point $(x_1, \ldots, x_n) \in \mathbb{R}^n$ with ACCEPT/REJECT
- solves membership problem for underlying set A of accepted points

Theorem (Ben-Or, 1983; based on results of Milnor and Thom)

Let $A \subseteq \mathbb{R}^n$, and let #A be the number of connected components of A. Then any algebraic computation tree for A has worst case height of at least $0.38 \log(\#A) - 0.61n$.

Small (but difficult) technical improvements by Seiferas (1988); A.C.C. Yao (1991, 1995); Grigoriev & Vorobjov (1996); Fleischer (1999)

Problem: Element Uniqueness

Input: Real numbers x_1, \ldots, x_n Question: Are these numbers pairwise distinct?

- Every permutation (π(1), π(2), ..., π(n)) of integers 1, ..., n lies in separate connected component of YES region
- Hence $\#A \ge n!$
- Hence Ben-Or's theorem yields $\Omega(n \log n)$ lower bound in ACT

Problem: Sorting

Input: Real numbers x_1, \ldots, x_n and $y_1 \le y_2 \le \cdots \le y_n$ Question: Is y-list the sorted version of x-list?

Problem: Set Equality

Input: Real numbers x_1, \ldots, x_n and y_1, \ldots, y_n Question: Is y-list a re-ordered version of x-list?

• Ben-Or's theorem yields $\Omega(n \log n)$ lower bounds in ACT

Problem: Minimum link path

Input: A set of polygonal (pairwise disjoint) obstacles in \mathbb{R}^2 with altogether *n* corners; a start point *s* and a goal *t*. Goal: Find polygonal path from *s* to *t* that avoids all obstacles and has minimum number of links.

Theorem (Mitchell, Rote & Woeginger, 1992)

- A minimum link path can be found in $O(n^2 \alpha(n) \log^2 n)$ time.
- Lower bound $\Omega(n \log n)$ for decision version in ACT.

Problem: Subset Sum

Input: Positive real numbers x_1, \ldots, x_n Question: Does there exist a subset whose elements add up to 1?

Theorem (Dobkin & Lipton 1978, combined with Ben-Or 1983)

SUBSET SUM has $\Omega(n^2)$ lower bound in ACT.

Theorem (Meyer auf der Heide, 1984)

SUBSET SUM has $O(n^4 \log n)$ algorithm in ACT (even in the more restricted linear decision tree model).

- Note: Floor and ceiling function are not atomic operations in ACT
- Note: ACT does not support indirect addressing
- $\Omega(n \log n)$ lower bounds in ACT often deteriorate to $\Omega(n)$ in RAM
- There exist (fairly natural) problems with Ω(n log n) lower bound in ACT and with O(n) algorithm on RAM
- ACT does not require algorithms to be uniform
- Hence: Lower bounds in ACT also hold for non-uniform algorithms
- Hence: Lower bounds in ACT tend to be weak

3-SUM conjecture

Problem: 3-SUM

Input: Positive real numbers x_1, \ldots, x_n Question: Do there exist three indices i, j, k with $x_i + x_j + x_k = 0$?

Some known facts about 3-SUM on RAM:

- Solvable in $n^2 \log n$ time (very easy)
- Solvable in n^2 time (needs some thought)
- Solvable in $n^2/(\log n/\log \log n)^{2/3}$ time (Grønlund & Pettie, 2014)

Some known fact about 3-SUM in linear decision tree:

• Solvable in $n^{3/2}\sqrt{\log n}$ time (Grønlund & Pettie, 2014)

3-SUM conjecture

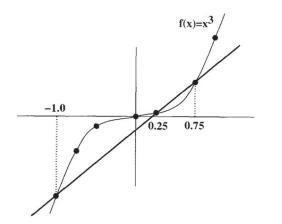
For no real $\varepsilon > 0$, there exists an $O(n^{2-\varepsilon})$ algorithm for 3-SUM on the RAM.

- Folklore conjecture from the 1980s
- Popularized by a 1995 paper of Gajentaan & Overmars
 "On a class of O(n²) problems in computational geometry"

Problem: 3-points-on-line

Input: A set of n points in the plane. Question: Is there a line that contains at least three of these points?

3-SUM conjecture (3)



- a + b + c = 0 if and only if (a, a^3) and (b, b^3) and (c, c^3) collinear (by considering $x^3 - (a + b + c)x^2 + (ab + ac + bc)x - abc = 0$)
- Hence 3-SUM conjecture implies lower bound for 3-points-on-line

Theorem (Gajentaan & Overmars, 1995)

The 3-SUM conjecture implies that there is no $O(n^{2-\varepsilon})$ algorithm for the following problems:

- Deciding whether a planar point set has three points on common line
- Deciding whether a set of line segments in \mathbb{R}^2 has a line separator
- Deciding whether a given set of strips covers a given rectangle
- Deciding whether a given set of triangles covers a given triangle
- Deciding whether the union of a set of triangles contains a hole
- Deciding whether a rod can be moved through a set of line segment obstacles from given source to given goal position
- Etc, etc, etc.

Tons of similar results have been derived over the last 20 years.

Orthogonal vectors and SETH

Problem: Orthogonal Vectors

Input: Two *n*-element sets $U, V \subset \mathbb{R}^d$ Question: Do there exist $u \in U$ and $v \in V$ with uv = 0?

Some known facts about Orthogonal Vectors on RAM:

- Solvable in n^2d time (trivial)
- The exponent can be lowered from 2 to 2 const/(log d log log n) (Abboud, Williams & Yu, 2015)

Orthogonal Vectors conjecture (Ryan Williams, 2005)

For no real $\varepsilon > 0$, there exists an $O(n^{2-\varepsilon}d^{const})$ algorithm for Orthogonal Vectors.

Strong Exponential Time Hypothesis (SETH)

For no real $\varepsilon > 0$, the SATISFIABILITY problem with *n* variables and m = O(n) clauses can be solved in $O(2^{(1-\varepsilon)n})$ time.

Strong Exponential Time Hypothesis (SETH)

For no real $\varepsilon > 0$, the SATISFIABILITY problem with *n* variables and m = O(n) clauses can be solved in $O(2^{(1-\varepsilon)n})$ time.

Theorem (R. Williams, 2005)

SETH implies the Orthogonal Vectors conjecture.

- Consider SATISFIABILITY instance
- *m*-dimensional vectors; every coordinate corresponds to one clause
- Split variables into two groups U' and V' of size n/2
- For every truth assignment for U' create vector: If clause c is satisfied, coordinate c is set to 0; otherwise set to 1.
- Do the same for truth assignments for V'
- $2^{n/2}$ vectors for U', and $2^{n/2}$ vectors for V'

Problem: Frechet distance

Input: Given two polygonal routes P and Q with n corners in \mathbb{R}^2 . Goal: Find monotone parametrizations $\alpha : [0,1] \to P$ and $\beta : [0,1] \to Q$, so that the maximum distance $\alpha(x)$ to $\beta(x)$ is minimized.

Some known facts about Frechet distance problem:

- Solvable in n^2 time (Alt & Godau, 1995)
- Solvable in n² log n/ log log n time (Agarwal, Avraham, Kaplan & Sharir, 2012) (Buchin, Buchin, Meulemans & Mulzer, 2014)
- Orthogonal Vectors conjecture implies that Frechet distance problem has no $O(n^{2-\varepsilon})$ algorithm (Bringmann, 2014)

Orthogonal vectors yields many other quadratic lower bounds:

- for instance: longest common subsequence
- for instance: dynamic time warping distance
- for instance: string edit distance (Levenshtein distance)

It is unknown

- whether Orthogonal Vectors conjecture implies SETH
- whether Orthogonal Vectors implies 3-SUM conjecture
- whether 3-SUM implies Orthogonal Vectors conjecture
- whether 3-SUM implies SETH
- whether SETH implies 3-SUM

All-Pairs-Shortest-Paths

Problem: All-Pairs-Shortest-Paths (APSP)

Input: An edge-weighted graph on *n* vertices.

Goal: Compute lengths of shortest paths between all pairs of vertices.

Some known facts about APSP:

- Floyd-Warshall algorithm (from 1962) solves APSP in $O(n^3)$ time.
- Small speed-up to $n^3/2\sqrt{\log n}$ by Williams (2014)
- So far, no $O(n^{3-\varepsilon})$ algorithm has been found for APSP.

APSP conjecture (Vassilevska-Williams & Williams, 2010)

For no real $\varepsilon > 0$, there exists an $O(n^{3-\varepsilon})$ algorithm for APSP.

Theorem (Vassilevska-Williams and Williams, 2010)

The APSP conjecture is equivalent to the conjecture that there is no $O(n^{3-\varepsilon})$ algorithm for the following problems:

- Detecting a negative weight triangle in an edge-weighted graph
- Finding min weight cycle in graph with non-negative edge weights
- Finding the second-shortest *s*-*t*-path in an edge-weighted graph
- The replacement paths problem in an edge-weighted digraph
- Verifying whether a given matrix defines a metric
- Verifying a matrix product over (min, +) semiring
- Etc, etc, etc.

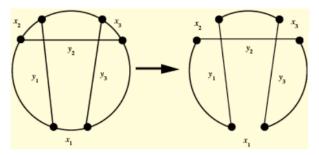
TSP and *k*-opt

Problem: Travelling Salesman Problem (TSP)

Input: *n* cities, plus all the distances $d(\cdot, \cdot)$ between city pairs Goal: Find shortest round-trip (TSP tour) through these cities.

k-opt is a popular local search neighborhood for the TSP:

• To improve a given tour, remove k edges and reconnect the pieces



- Goes back to Croes (1958), Flood (1956), Lin (1965), Bock (1958)
- Local optima can be hard to find (exponential lower bound for path following version)
- Computing local optima for 20-opt is PLS-complete (Krentel, 1989)
- Local optima for k-opt may be sub-optimal (even if $k \approx 3n/8$)
- Local optima for k-opt may be very bad (unbounded worst case ratio)
- Local optima for 2-opt may be very bad (worst case ratio $\Omega(\sqrt{n})$)
- Local optima for 2-opt may be very bad, even in Euclidean plane (worst case ratio Ω(log n/ log log n))
- Experimental: local optima for Euclidean 2-opt within 5% of optimal
- Experimental: local optima for Euclidean 3-opt within 2% of optimal

Problem: k-opt detection

Input: a TSP-instance; a tour TQuestion: does the *k*-opt neighborhood of T contain a shorter tour?

Problem: k-opt detection

Input: a TSP-instance; a tour TQuestion: does the *k*-opt neighborhood of T contain a shorter tour?

Problem: k-opt optimization

Input: a TSP-instance; a tour TQuestion: find the shortest tour in the *k*-opt neighborhood of T

Problem: k-opt detection

Input: a TSP-instance; a tour TQuestion: does the *k*-opt neighborhood of T contain a shorter tour?

Problem: k-opt optimization

Input: a TSP-instance; a tour TQuestion: find the shortest tour in the *k*-opt neighborhood of T

A trivial observation:

For fixed values of k,

both problems can be solved in $O(n^k)$ time.

- try all $\binom{n}{k}$ possibilities for removing k edges
- try all $2^{k} k!$ ways of reflecting and ordering the k resulting tour pieces

Theorem (Marx, 2008)

Problem k-opt detection with parameter k is W[1]-complete.

Theorem (Guo, Hartung, Niedermeier & Suchý, 2013)

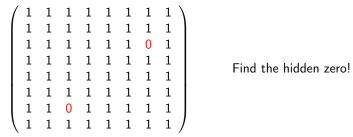
Under the Exponential Time Hypothesis (ETH), in the running time of an algorithm for k-opt detection the exponent of n must grow at least like $k/\log k$.

- by fpt-reduction from k-Partitioned Subgraph Isomorphism
- · delicate and tedious handling of the parameter

Observation

Any algorithm for 2-opt detection on n cities needs $\Omega(n^2)$ time in the worst case.

Proof: the algorithm must read & analyze all the input data



Johnson and McGeoch (1997) write in a survey chapter on local search:

To complete our discussion of running times, we need to consider the time per move as well as the number of moves. This includes the time needed to *find* an improving move (or verify that non exists), together with the time needed to *perform* the move. In the worst case, 2-opt and 3-opt require $\Omega(n^2)$ and $\Omega(n^3)$ time respectively to verify local optimality, assuming all possible moves must be considered.

Theorem (De Berg, Buchin, Jansen, Woeginger, 2016)

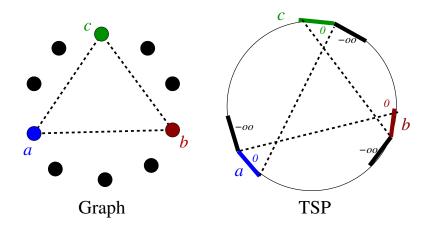
Under the All Pairs Shortest Paths conjecture (APSP), 3-opt detection cannot be solved in $\Omega(n^{3-\varepsilon})$ time.

Sketch of proof:

- Take an instance of detecting negative triangle in edge-weighted graph
- Order the vertices in a circle
- Translate every vertex into two edges, of cost 0 and $-\infty$
- The resulting cycle with 2n edges is the starting tour T
- The edge-weights (in graph) become distances between cost 0 edges

Remark: We also have a reduction in the other direction

The case k=3, continued (3)



Johnson and McGeoch (2002) write in a survey chapter on the TSP:

Currently, 2-opt and 3-opt are the main k-opt heuristics used in practice, introduced respectively by Flood and Croes (1958) and by Bock. In Shen Lin's influential 1965 study of 3-opt, he concluded that the extra time required for 4-opt was not worth the small improvement in tour quality it yielded, and no results have appeared since then to contradict this conclusion.

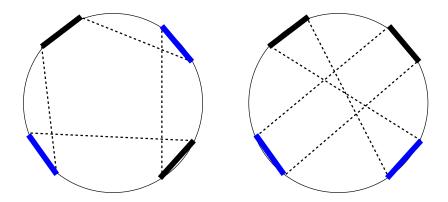
Theorem (De Berg, Buchin, Jansen, Woeginger, 2016)

The 4-opt optimization problem for *n* cities can be solved in $O(n^3)$ time.

Sketch of proof:

- Distinguish $2^3 \cdot 3! = 48$ cases for possible orderings of tour-pieces
- Two leaving edges collide, if connected by entering edge
- Every leaving edge collides with exactly two other leaving edges
- In every case: some pair of leaving edges is not colliding
- Check all $O(n^2)$ possibilities for the other leaving edges
- Optimize positions of not colliding pair in O(n) time

The case k = 4, continued (3)



Final remarks (1)

To summarize the results on *k*-opt for $k \leq 4$:

- 2-opt in $O(n^2)$ time (and that's best possible)
- 3-opt in $O(n^3)$ time (and that's best possible)
- 4-opt in $O(n^3)$ time (and that's best possible)

Final remarks (1)

To summarize the results on *k*-opt for $k \leq 4$:

- 2-opt in $O(n^2)$ time (and that's best possible)
- 3-opt in $O(n^3)$ time (and that's best possible)
- 4-opt in $O(n^3)$ time (and that's best possible)

Theorem (De Berg, Buchin, Jansen, Woeginger, 2016)

For any fixed $k \ge 2$, the *k*-opt optimization problem for *n* cities can be solved in $O(n^{\lfloor 2k/3 \rfloor + 1})$ time.

Theorem (Cygan, Kowalik, Socala, 2017)

For any fixed $k \ge 2$, the *k*-opt optimization problem for *n* cities can be solved in $O(n^{(1/4+\varepsilon_k)k})$ time, where $\varepsilon_k \to 0$.

• In particular: 5-opt in $O(n^{3.4})$ time

Unfortunately:

- There are no tools available for proving $\Omega(n^4)$ lower bounds
- There are no tools available for proving $\Omega(n^5)$ lower bounds
- Etc.

Note that:

- 3-SUM is k = 3 special case of W[1]-hard k-SUM problem
- Negative Weight Triangle is related to *W*[1]-hard *k*-CLIQUE
- Orthogonal Vectors is k = 2 special case of something W[1]-hard

Possible research direction, perhaps worthwhile:

- Establish cross-connections between small-parameter cases of various W[1]-hard problems
- Perhaps get $\Omega(n^4)$ lower bound technique along similar lines

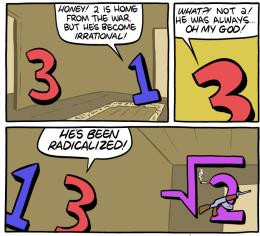
Problem: Minimum Length Triangulation of Convex Polygon

Input: The vertices v_1, \ldots, v_n of a convex polygon P. Goal: Find a triangulation of P that minimizes total length.

Minimum Length Triangulation of Convex Polygon:

• APSP will not help us in getting $\Omega(n^3)$ lower bound

Thank you!



Smbc-comics.com