Overview

- Linear Programming
 - Historical perspective
 - Computational progress

- Mixed Integer Programming
 - Introduction: what is MIP?
 - Solving MIPs: a bumpy landscape
 - Computational progress
A Definition

A *linear program* (LP) is an optimization problem of the form

\[
\begin{align*}
\text{Minimize} & \quad c^T x \\
\text{Subject to} & \quad Ax = b \\
& \quad l \leq x \leq u
\end{align*}
\]
The Early History

- **1947 – George Dantzig**
 - 4 Nobel Prizes in LP (Economists)
 - Invented simplex algorithm
 - First LP solved: Laderman (1947), 9 cons., 77 vars., 120 man-days.

- **1951 – First computer code for solving LPs**

- **1960 – LP commercially viable**
 - Used largely by oil companies

- **1970 – MIP commercially viable**
 - MPSX/370, UMPIRE
The Decade of the 70’s

- **Interest in optimization flowered**
 - Numerous new applications identified
 - Large scale planning applications particularly popular

- **Significant difficulties emerged**
 - Building application was very time consuming and very risky
 - 3-4 year development cycles
 - The technology just was not ready: LPs were hard and MIP was a disaster

- **Result:** *Disillusionment with LP and MIP.*
The Decade of the 80’s

Mid 80’s:
- There was perception was that LP software had progressed about as far as it could go – MPSX/370 and MPSIII
- BUT LP was definitely not a solved problem … example: “Unsolvable” airline LP model with 4420 constraints, 6711 variables

There were several key developments
- IBM PC introduced in 1981
- Relational databases developed:
 - Separation of logical and physical allocation of data.
 - ERP systems introduced.
- Karmarkar’s 1984 paper on interior-point methods
The Decade of the 90’s

- LP performance takes off
 - Primal-dual log-barrier algorithms completely reset the bar
 - Simplex algorithms unexpectedly kept pace

- Data became plentiful and accessible
 - ERP systems became commonplace

- Popular new applications begin to show that MIP could work on difficult, real-world problems
 - Airlines, Supply-Chain
Linear Programming
Example: A Production Planning Model
401,640 constraints 1,584,000 variables

Solution time line (2.0 GHz Pentium 4):

- Test: Went back to 1st CPLEX (1988)
- 1988 (CPLEX 1.0): Houston, 13 Nov 2002
Example: A Production Planning Model
401,640 constraints 1,584,000 variables

Solution time line (2.0 GHz Pentium 4):

- Test: Went back to 1st CPLEX (1988)
- 1988 (CPLEX 1.0): 8.0 days (Berlin, 21 Nov)
Example: A Production Planning Model
401,640 constraints 1,584,000 variables

Solution time line (2.0 GHz Pentium 4):

- Test: Went back to 1st CPLEX (1988)
- 1988 (CPLEX 1.0): 15.0 days (Dagstuhl, 28 Nov)
Example: A Production Planning Model

401,640 constraints 1,584,000 variables

Solution time line (2.0 GHz Pentium 4):

- Test: Went back to 1st CPLEX (1988)
- 1988 (CPLEX 1.0): 19.0 days (Amsterdam, 2 Dec)
Example: A Production Planning Model
401,640 constraints 1,584,000 variables

Solution time line (2.0 GHz Pentium 4):

- Test: Went back to 1st CPLEX (1988)
- 1988 (CPLEX 1.0): 23.0 days (Houston, 6 Dec)
Example: A Production Planning Model
401,640 constraints 1,584,000 variables

Solution time line (2.0 GHz Pentium 4):

- Test: Went back to 1st CPLEX (1988)
- 1988 (CPLEX 1.0): 29.8 days
- 1997 (CPLEX 5.0): 1.5 hours
- 2003 (CPLEX 9.0): 59.1 seconds

<table>
<thead>
<tr>
<th>Year</th>
<th>Time</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988</td>
<td>29.8 days</td>
<td>1x</td>
</tr>
<tr>
<td>1997</td>
<td>1.5 hours</td>
<td>480x</td>
</tr>
<tr>
<td>2003</td>
<td>59.1 seconds</td>
<td>43500x</td>
</tr>
</tbody>
</table>

© 2017 Gurobi Optimization
LP Today

- Practitioners consider LP a solved problem

- Large models can now be solved robustly and quickly
 - Regularly solve models with millions of variables and constraints
However, a word of warning …

- Real applications still exist where LP performance is an issue
 - ~2% of MIPs are blocked by LP performance
 - Challenging pure-LP applications persist
 - Ex: Power industry (Financial Transmission-Right Auctions)

- **Challenge:** Further research in LP algorithms is needed (there has been little progress since 2004)
Mixed Integer Programming
A Definition

A *mixed-integer program* (MIP) is an optimization problem of the form

\[
\begin{align*}
\text{Minimize} & \quad c^T x \\
\text{Subject to} & \quad Ax = b \\
& \quad l \leq x \leq u \\
& \quad \text{some or all } x_j \text{ integer}
\end{align*}
\]
Customer Applications
(Q4 2011–Q3 2012)

- Accounting
- Advertising
- Agriculture
- Airlines
- ATM provisioning
- Compilers
- Defense
- **Electrical power**
- **Energy**
- **Finance**
- Food service
- Forestry
- Gas distribution
- Government
- Internet applications
- **Logistics/supply chain**
- Medical
- Mining
- National research labs
- Online dating
- Portfolio management
- Railways
- Recycling
- Revenue management
- Semiconductor
- Shipping
- Social networking
- Sourcing
- Sports betting
- Sports scheduling
- Statistics
- Steel Manufacturing
- Telecommunications
- Transportation
- Utilities
- **Workforce Management**
Solving MIPs
MIP solution framework: LP based Branch-and-Bound

Solve LP relaxation:

\[v = 3.5 \text{ (fractional)} \]

Remarks:

1. GAP = 0 \(\Rightarrow\) Proof of optimality
2. In practice: Often good enough to have good Solution
A Bumpy Solution Landscape
Example 1: LP still can be HARD

SGM: Schedule Generation Model
157323 rows, 182812 columns

- LP relaxation at root node:
 - 18 hours
- Branch-and-bound
 - 1710 nodes, first feasible
 - 3.7% gap
 - Time: 92 days!!
- MIP does not appear to be difficult: LP is a roadblock
Example 2: MIP really is HARD

A customer model: 44 constraints, 51 variables, maximization
51 general integer variables (and no bounds)

Branch-and-bound: Initial integer solution -2186.0
Initial upper bound -1379.4
...after 1.4 days, 32,000,000 B&B nodes, 5.5 Gig tree
Integer solution and bound: UNCHANGED

What’s wrong? Bad modeling. Free GIs chase each other off to infinity.
Example 2: Here’s what’s wrong

Maximize
 x + y + z
Subject To
 2x + 2y ≤ 1
 z = 0
 x free y free
 x, y integer

Note: This problem can be solved in several ways
 • Removing z=0, objective is integral [Presolve]
 • Euclidean reduction on the constraint [Presolve]

However: Branch-and-bound cannot solve!
Example 3: A typical situation today – Supply-chain scheduling

- **Model description:**
 - Weekly model, daily buckets: Objective to minimize end-of-day inventory.
 - Production (single facility), inventory, shipping (trucks), wholesalers (demand known)

- **Initial modeling phase**
 - Simplified prototype + complicating constraints (production run grouping req’t, min truck constraints)
 - **RESULT:** Couldn’t get good feasible solutions.

- **Decomposition approach**
 - Talk to current scheduling team: They first decide on “producibles” schedule. Simulate using heuristics.
 - Fixed model: Fix variables and run MIP
Supply-chain scheduling (continued): Solving the fixed model

CPLEX 5.0 (1997):

Integer optimal solution (0.0001/0): Objective = $1.5091900536e+05$
Current MIP best bound = $1.5090391809e+05$ (gap = 15.0873)
Solution time = 3465.73 sec. Iterations = 7885711 Nodes = 489870 (2268)

CPLEX 11.0 (2007):

Implied bound cuts applied: 60
Flow cuts applied: 85
Mixed integer rounding cuts applied: 41
Gomory fractional cuts applied: 29

MIP - Integer optimal solution: Objective = $1.5091900536e+05$
Solution time = 0.63 sec. Iterations = 2906 Nodes = 12

Original model: Now solvable to optimality in ~100 seconds (20% improvement in solution quality)
Computational History: 1950 –1998

- 1954 Dantzig, Fulkerson, S. Johnson: 42 city TSP
 - Solved to optimality using LP and cutting planes
- 1957 Gomory
 - Cutting plane algorithms
- 1960 Land, Doig; 1965 Dakin
 - B&B
- 1964–68 LP/90/94
 - First commercial application
- IBM 360 computer
 - 1974 MPSX/370
 - 1976 Sciconic
 - LP–based B&B
 - MIP became commercially viable
- 1975 – 1998 Good B&B remained the state–of–the–art in commercial codes, in spite of
 - Edmonds, polyhedral combinatorics
 - 1973 Padberg, cutting planes
 - 1973 Chvátal, revisited Gomory
 - 1974 Balas, disjunctive programming
 - 1983 Crowder, Johnson, Padberg: PIPX, pure 0/1 MIP
 - 1987 Van Roy and Wolsey: MPSARX, mixed 0/1 MIP
 - TSP, Grötschel, Padberg, ...
1998 ... A New Generation of MIP Codes

- Linear programming
 - Stable, robust dual simplex
- Variable/node selection
 - Influenced by traveling salesman problem
- Primal heuristics
 - 12 different tried at root
 - Retried based upon success
- Node presolve
 - Fast, incremental bound strengthening (very similar to Constraint Programming)

- Presolve – numerous small ideas
 - Probing in constraints:
 \[\sum x_j \leq \left(\sum u_j \right) y, \quad y = 0/1 \]
 \[\Rightarrow x_j \leq u_j y \text{ (for all } j) \]
- Cutting planes
 - Gomory, mixed-integer rounding (MIR), knapsack covers, flow covers, cliques, GUB covers, implied bounds, zero-half cuts, path cuts
Some Test Results

- **Test set:** 1852 real-world MIPs
 - Full library
 - 2791 MIPs
 - Removed:
 - 559 “Easy” MIPs
 - 348 “Duplicates”
 - 22 “Hard” LPs (0.8%)

- **Parameter settings**
 - Pure defaults
 - 30000 second time limit

- **Versions Run**
MIP Speedups

- **Mature Dual Simplex:** 1994
- **Mined Theoretical Backlog:** 1998
- **29530x improvement**
Progress: 2009 – Present
Gurobi MIP Library

(3550 models)
MIP Speedup 2009–Present

- **Starting point**
 - Gurobi 1.0 & CPLEX 11.0 ~equivalent on 4-core machine

- **Gurobi version-to-version improvements**
 - Gurobi 1.0 → 2.0: 2.2X
 - Gurobi 2.0 → 3.0: 1.9X (4.3X)
 - Gurobi 3.0 → 4.0: 1.3X (5.6X)
 - Gurobi 4.0 → 5.0: 1.7X (9.3X)
 - Gurobi 5.0 → 6.0: 1.9X (17.6X)
 - Gurobi 6.0 → 7.0: 2.5X (43.2X)

- **Machine-independent IMPROVEMENT since 1991**
 - Over 1.3 million X -- 1.8X/year
Suppose you were given the following choices:

- **Option 1**: Solve a MIP with today’s solution technology on a machine from 1991
- **Option 2**: Solve a MIP with 1991 solution technology on a machine from today

Which option should you choose?

- **Answer**: Option 1 would be faster by a factor of approximately 300.
Thank you