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Overview

} Linear Programming
◦ Historical perspective
◦ Computational progress

} Mixed Integer Programming
◦ Introduction:  what is MIP?
◦ Solving MIPs:  a bumpy landscape
◦ Computational progress
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A Definition

Minimize cT x
Subject to Ax = b

l ≤ x ≤ u

A	linear	program	(LP)	is	an	optimization	problem	
of	the	form
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Economic Objective

Resource Constraints
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The Early History 
} 1947 – George Dantzig
◦ 4 Nobel Prizes in LP (Economists)
◦ Invented simplex algorithm
◦ First LP solved:  Laderman (1947), 9 cons., 77 vars., 120 man-

days.

} 1951 – First computer code for solving LPs

} 1960 – LP commercially viable
◦ Used largely by oil companies

} 1970 – MIP commercially viable
◦ MPSX/370, UMPIRE
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The Decade of the 70’s
} Interest in optimization flowered
◦ Numerous new applications identified

� Large scale planning applications particularly popular

} Significant difficulties emerged
◦ Building application was very time consuming and very risky

� 3-4 year development cycles
◦ The technology just was not ready:   LPs were hard and MIP was a 

disaster

} Result: Disillusionment with LP and MIP.
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The Decade of the 80’s
} Mid 80’s:  
◦ There was perception was that LP software had progressed about 

as far as it could go – MPSX/370 and MPSIII

◦ BUT LP was definitely not a solved problem … example:  
“Unsolvable” airline LP model with 4420 constraints, 6711 variables 

} There were several key developments 
◦ IBM PC introduced in 1981
◦ Relational databases developed:  

� Separation of logical and physical allocation of data.  
� ERP systems introduced.
◦ Karmarkar’s 1984 paper on interior-point methods
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The Decade of the 90’s
} LP performance takes off
◦ Primal-dual log-barrier algorithms completely reset the bar
◦ Simplex algorithms unexpectedly kept pace

} Data became plentiful and accessible
◦ ERP systems became commonplace

} Popular new applications begin to show that MIP could work on 
difficult, real-world problems
◦ Airlines, Supply-Chain
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Linear 
Programming
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Solution time line (2.0 GHz Pentium 4):
◦ Test:  Went back to 1st CPLEX (1988)

◦ 1988 (CPLEX 1.0):         Houston, 13 Nov 2002

Example:  A Production Planning Model
401,640 constraints   1,584,000 variables
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Solution time line (2.0 GHz Pentium 4):
◦ Test:  Went back to 1st CPLEX (1988)

◦ 1988 (CPLEX 1.0):   8.0 days (Berlin, 21 Nov) 

Example:  A Production Planning Model
401,640 constraints   1,584,000 variables
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Solution time line (2.0 GHz Pentium 4):
◦ Test:  Went back to 1st CPLEX (1988)

◦ 1988 (CPLEX 1.0):   15.0 days (Dagstuhl, 28 Nov) 

Example:  A Production Planning Model
401,640 constraints   1,584,000 variables
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Solution time line (2.0 GHz Pentium 4):
◦ Test:  Went back to 1st CPLEX (1988)

◦ 1988 (CPLEX 1.0):   19.0 days (Amsterdam, 2 Dec) 

Example:  A Production Planning Model
401,640 constraints   1,584,000 variables
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Solution time line (2.0 GHz Pentium 4):
◦ Test:  Went back to 1st CPLEX (1988)

◦ 1988 (CPLEX 1.0):   23.0 days (Houston, 6 Dec) 

Example:  A Production Planning Model
401,640 constraints   1,584,000 variables
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Solution time line (2.0 GHz Pentium 4):
◦ Test:  Went back to 1st CPLEX (1988)

◦ 1988 (CPLEX 1.0): 29.8 days

◦ 1997 (CPLEX 5.0): 1.5 hours

◦ 2003 (CPLEX 9.0):   59.1 seconds

Example:  A Production Planning Model
401,640 constraints   1,584,000 variables

1x

480x

43500x

Speedup
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LP Today

} Practitioners consider LP a solved problem

} Large models can now be solved robustly and 
quickly
◦ Regularly solve models with millions of variables 

and constraints
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LP Today

} However, a word of warning …

◦ Real applications still exist where LP performance is 
an issue
� ~2% of MIPs are blocked by LP performance
� Challenging pure-LP applications persist

� Ex:  Power industry (Financial Transmission-Right Auctions)

◦ Challenge:  Further research in LP algorithms is 
needed (there has been little progress since 2004)
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Mixed Integer 
Programming
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A Definition

integerallorsome j

T

x
uxl
bAxtoSubject
xcMinimize

££
=

A	mixed-integer	program	(MIP)	is	an	optimization	
problem	of	the	form
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} Accounting
} Advertising
} Agriculture
} Airlines
} ATM provisioning
} Compilers
} Defense
} Electrical power 
} Energy 
} Finance 
} Food service
} Forestry
} Gas distribution
} Government
} Internet applications
} Logistics/supply chain 
} Medical
} Mining

} National research labs
} Online dating
} Portfolio management
} Railways
} Recycling
} Revenue management
} Semiconductor
} Shipping
} Social networking
} Sourcing
} Sports betting
} Sports scheduling
} Statistics
} Steel Manufacturing
} Telecommunications
} Transportation
} Utilities
} Workforce Management 
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Customer Applications
(Q4 2011-Q3 2012)
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Solving MIPs
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MIP	solution	framework:		
LP	based	Branch-and-Bound

G
A
P

Root

Integer

Integer

Infeas

Lower Bound

Upper Bound

Remarks:
(1)	GAP	=	0		Þ Proof	of	optimality
(2)	In	practice:		Often	good	enough	to	have	good	Solution

Solve	LP	relaxation:

v=3.5	(fractional)
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A Bumpy Solution Landscape
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q LP relaxation at root node:
§ 18 hours

q Branch-and-bound
§ 1710 nodes, first feasible
§ 3.7% gap
§ Time:  92 days!!

q MIP does not appear to be difficult:  LP is a 
roadblock

Example	1:		LP	still	can	be	HARD

Example 1: LP still can be HARD
SGM:  Schedule Generation Model

157323 rows, 182812 columns
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Example 2: MIP really is HARD

A	customer	model:		44	constraints,	51	variables,	maximization
51	general	integer	variables	(and	no	bounds)

Branch-and-bound:			Initial	integer	solution						-2186.0
Initial	upper	bound											-1379.4

…after	1.4	days,	32,000,000	B&B	nodes,	5.5	Gig	tree
Integer	solution	and	bound:		UNCHANGED

What’s	wrong?	 Bad	modeling.		Free	GIs	chase	each	other	off	to	infinity.
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Maximize 
x + y + z

Subject To
2 x + 2 y £ 1
z = 0
x free y free
x,y integer

Note:  This problem can be solved in several ways
• Removing z=0, objective is integral [Presolve]
• Euclidean reduction on the constraint [Presolve]

However:  Branch-and-bound cannot solve!

Example 2: Here’s what’s wrong
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} Model description: 
◦ Weekly model, daily buckets:  Objective to minimize 

end-of-day inventory.
◦ Production (single facility), inventory, shipping 

(trucks), wholesalers (demand known)
} Initial modeling phase

◦ Simplified prototype + complicating constraints 
(production run grouping req’t, min truck 
constraints)

◦ RESULT:  Couldn’t get good feasible solutions.
} Decomposition approach

◦ Talk to current scheduling team:  They first decide 
on “producibles” schedule.  Simulate using heuristics.

◦ Fixed model:  Fix variables and run MIP

Example 3: A typical situation 
today – Supply-chain scheduling
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Integer optimal solution (0.0001/0):  Objective =    1.5091900536e+05
Current MIP best bound =    1.5090391809e+05 (gap = 15.0873)
Solution time = 3465.73 sec.  Iterations = 7885711  Nodes = 489870 (2268)

CPLEX	5.0	(1997):

Original	model: Now	solvable	to	optimality	in	
~100	seconds	(20%	improvement	in	solution	
quality)

CPLEX	11.0	(2007):
Implied bound cuts applied:  60
Flow cuts applied:  85
Mixed integer rounding cuts applied:  41
Gomory fractional cuts applied:  29

MIP - Integer optimal solution:  Objective =  1.5091900536e+05
Solution time =    0.63 sec.  Iterations = 2906  Nodes = 12

Supply-chain	scheduling	(continued):	
Solving	the	fixed	model
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Computational History:
1950 –1998

§ 1954 Dantzig, Fulkerson, S. 
Johnson: 42 city TSP
§ Solved to optimality using LP 

and cutting planes
§ 1957 Gomory

§ Cutting plane algorithms
§ 1960 Land, Doig; 1965 

Dakin
§ B&B

§ 1964-68  LP/90/94
§ First commercial application

§ IBM 360 computer
§ 1974 MPSX/370
§ 1976 Sciconic

§ LP-based B&B
§ MIP became commercially viable

§ 1975 – 1998 Good B&B 
remained the state-of-the-art 
in commercial codes, in spite 
of ….
§ Edmonds, polyhedral 

combinatorics
§ 1973 Padberg, cutting planes
§ 1973 Chvátal, revisited Gomory
§ 1974 Balas, disjunctive 

programming
§ 1983 Crowder, Johnson, 

Padberg: PIPX, pure 0/1 MIP
§ 1987 Van Roy and Wolsey: 

MPSARX, mixed 0/1 MIP
§ TSP, Grötschel, Padberg, …

28© 2017 Gurobi Optimization



§ Linear programming
§ Stable, robust dual simplex

§ Variable/node 
selection
§ Influenced by traveling 

salesman problem
§ Primal heuristics 

§ 12 different tried at root 
§ Retried based upon success

§ Node presolve
§ Fast, incremental bound 

strengthening (very similar 
to Constraint Programming)

§ Presolve – numerous 
small ideas
§ Probing in constraints:  

å xj £ (å uj) y,  y = 0/1
è xj £ ujy (for all j)

§ Cutting planes
§ Gomory, mixed-integer 

rounding (MIR), knapsack 
covers, flow covers, cliques, 
GUB covers, implied bounds, 
zero-half cuts, path cuts

1998	…		A	New	Generation	of	MIP	Codes
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Some Test Results
} Test set:   1852 real-world MIPs
◦ Full library

� 2791 MIPs
◦ Removed:

� 559 “Easy” MIPs
� 348 “Duplicates”
� 22 “Hard” LPs (0.8%)

} Parameter settings
◦ Pure defaults
◦ 30000 second time limit

} Versions Run
◦ CPLEX   1.2 (1991) -- CPLEX 11.0 (2007)
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MIP	Speedups
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Progress:  2009 - Present
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Gurobi MIP Library
(3550 models)
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Gurobi MIP Library
(3550 models)
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} Starting point
◦ Gurobi 1.0 & CPLEX 11.0 ~equivalent on 4-core machine

} Gurobi version-to-version improvements
◦ Gurobi 1.0 -> 2.0: 2.2X
◦ Gurobi 2.0 -> 3.0: 1.9X (4.3X)
◦ Gurobi 3.0 -> 4.0: 1.3X (5.6X)
◦ Gurobi 4.0 -> 5.0: 1.7X (9.3X)
◦ Gurobi 5.0 -> 6.0: 1.9X (17.6X)
◦ Gurobi 6.0 -> 7.0: 2.5X (43.2X)

} Machine-independent IMPROVEMENT since 1991
◦ Over 1.3 million X –- 1.8X/year

MIP Speedup 2009-Present
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Suppose you were given the 
following choices:
} Option 1: Solve a MIP with today’s solution 

technology on a machine from 1991
} Option 2:  Solve a MIP with 1991 solution 

technology on a machine from today

Which option should you choose?

} Answer:  Option 1 would be faster by a factor 
of approximately 300.
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Thank	you
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